

ENERGY**CONTROL** SU1604

Summator

3-447-004-03 2/6.18

Highlights

- New modular concept
- Software is downward compatible to U1600/1/2/3 summators
- Energy Control Language (ECL) for programming analyses, monitoring and optimization

U1604 basic module:

- **64 processing channels** for calculating energy, power and costs. Physical inputs (up to 64) or LON meters can be allocated as desired.
- Increased processing power compared with U1601/2/3 summators by a factor of 10 to 15 $\,$
- LON interface for 64 LON devices
- One RS 232 interface (max. 921 kBaud)
- One RS 485 interface (max. 921 kBaud, half-duplex)
- Two ECS LAN interfaces (max. 375 kBaud)
- Ethernet interface (100 MBit/s) with ECL access via TCP/IP

Further optional components:

- U1614 power pack module with status relay
- **U1624 S0 input module** with twelve S0-compatible meter inputs (up to 6 modules, max. 64 S0 inputs)

SU1604

- 1 SU1604 basic module
- 1 Split toroidal core
- 2 ME 22.5 T-bus mounting rail connector

SU1614

- 1 SU1614 power pack module
- 2 ME 17.5 T-bus mounting rail connector

SU1624

- 1 SU1624 pulse recording module
- 1 ME 22.5 T-bus mounting rail connector

Contents

1	Use	. 5
2 2.1	Introduction	. 5 . 6
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11	Device Description SU1604 Device Overview Channels/Calculations Inputs S0 Outputs S1 S2 Self-Test. RS 232/485 Port Ethernet Port ECS LAN LAN LED (LANL/LANR) LON Connection LON LED	8 8 11 11 12 12 12 12 12 12 15 15
4 4.1 4.2	Measurement Data Overview of Available Measurement Data Synchronizing Interval Measurement Data List	16 16 18
5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Operation (display menus)	20 20 21 22 23 24 26 27 28
6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12	Basic Configuration Overview of Setup Parameters Setup Selection Menu Summator Parameters (IDs, intervals, tariffs, outputs) RS232/485 Menu LON Menu ECS LAN Menu SETUP Submenus (Edit, Delete, Outputs, Bootstrap Loader, Password) Firmware Update COM Settings. Ethernet Port Relays and SO Relays (S0-OUT) Basic Software Configuration	30 30 31 32 40 42 42 43 45 45 47 48 50 52
7 7.1 7.2 7.3 7.4	Terminal Assignments U1614 Power Pack Module U1604 Basic Module U1624-S0IN12 TBUS Connection	54 55 56 57
8 8.1 8.2	Programming	60 60 61

13	Maintenance, Repair and Product Support	80
12	Index	78
11.7 11.8	Additional LON Parameters	77 77
11.4 11.5 11.6	Reinstalling a LON Device Configuration at a PC with ECSwin Software Replacing a LON Device	75 76 76
11 11.1 11.2 11.3	Connecting LON Bus Compatible Devices	68 68 68 69
10 10.1 10.2 10.3	LON Bus System Structure. Maximum Cable Lengths Cable Type Bus Termination.	66 67 67 67
9	Technical Data	64
8.3 8.4	ECL Extensions and Notes on Compatibility. INDEX Command Bug for U1601/2/3 with Use of UTC	62 63

1 Use

The Energy Control System (ECS) is used to ensure transparent cost center accounting. All electrical and non-electrical energy media can be logged, optimized and billed to the respective cost centers.

As a central device within the Energy Control System (ECS), the U1604 summator makes it possible to log and bill analog and digital quantities.

These operating instructions describe ECS operating software as of V3.00. **Current operating instructions for the latest firmware update are available for download at www.gossenmetrawatt.com**.

 $\mathsf{LON}^{\textcircled{B}}$ is a registered trade mark of the Echelon Corporation.

2 Introduction

The new modular concept of the U1604 permits space-saving setup of an ECS Energy Control System in accordance with actual requirements.

Thanks to strict software compatibility with the earlier U1601/2/3 summators and downward compatibility to the U1600 summator, previously used systems can be easily replaced or expanded.

A device can be set up using the following modules:

- U1604 basic module with the following interfaces:
- 1 ea. RS 232 (COM-1), 1 ea. RS 485 (COM-2), ECS LAN left + right, LON, 2 ea. S0 relay output
- U1614 power pack module with status relay for supplying power to all components via the TBUS and an additional 24 V DC output (max. 5 W) – overall output power amounts to 20 W
- U1624 S0IN12 input module with 12 S0-compatible inputs (up to 6 modules, max. 64 S0 inputs)

Connector Terminals

All signals are fed to the device via screw terminals which can be unplugged (3, 4 or 5-pole). This assures trouble-free replacement in the event that servicing is required.

TBUS

The individual components are connected to each other via the so-called TBUS. The TBUS is laid out as a 5 conductor system and distributes 24 V DC supply power and signals from the TBUS communications interface (RS-485) to all components. The fifth conductor is used to indicate device status.

One or two corresponding TBUS adapters are included with each U1604 component. These TBUS adapters (width: 17.5 or 22.5 mm) are snapped into the DIN top-hat rail in the fully assembled state before mounting the devices.

Please note: The U1614 power pack module with an overall width of 35 mm requires two 17.5 mm TBUS adapters, and all other devices require one or two of the 22.5 mm TBUS adapters.

Warnings:

- The terminals of the U1614 power pack module may only be disconnected or connected in the current/voltage-free state!
- During operation when auxiliary power is active, the U1614 power pack module may **not** be mounted to or removed from the TBUS!
- During operation when auxiliary power is active, neither the U1614 basic module nor any other components **should** be mounted to or removed from the TBUS.
- Opening the housing of the U1614 power pack module during operation is impermissible!

If replacement of the fuse should become necessary, for which the housing must be opened, all terminals must first be disconnected!

• The TBUS may only be used to connect ECS components – any combination with non-system devices with similar backplane connection is impermissible

2.1 Comparison of the Summators

The following table provides an overview of the hardware features included with the various ECS summators:

Hardware Feature	U1604	U1601/2/3	U1600
Modular concept with TBUS	~	—	-
COM-1 (RS 232)	Max. 921 kBd	Max. 115 kBd	Max. 38.4 kBd
COM-2 (RS 232)	_	✓ ¹ /✓/✓ Max. 115 kBd	(✔) ² Max. 9600 bd
COM-2 (RS 485)	Max. 921 kBd	—	-
ECS LAN (L+R)	Max. 375 kBd	Max. 375 kBd	Max. 125 kBd
LON	~	~	-
TCP/IP (10/100 Mbit/s) COM-4 COM-5	Port 5004 Port 5005	_	-
S0 compatible meter inputs with U1624 module (12 S0 ea.)	0 max. 64	0 3	24
Analog inputs (20 mA, 10 V, S0)	04	12/0/6	-
Analog outputs	—	2/0/2	-
Status relay (250 V AC, 3-pole)	✔ To U1614	~	~
Relay (250 V AC, 3-pole)	—	2/0/2	4
S0 relay (semiconductor relay)	2	4/0/4	-
RAM Type	4 MB MRAM ⁵	1 MB SRAM	128 kB / 512 kB ⁶ SRAM
Flash memory Type	128 MB Flash	2 MB Flash	512 kB EPROM
RTC real-time clock (with backup battery)Accuracy ⁷	5 ± 5 ppm (0 +10 ppm)	±20 ppm	±10 ppm

¹ COM-2 only available for U1601 with split cable

⁵ As opposed to SRAM, MRAM does not required a backup battery for data preservation

⁶ U1600 without/with memory expansion

⁷ Accuracy of ±10 ppm \rightarrow RTC gains (+) or loses (-) no more than roughly 0.8 s per day

² COM-2 for Ú1600 with split cable only and only usable for DCF radio controlled clock module or character output (printer) ³ Analog inputs can be used as S0 inputs (U1601 + U1603)

⁴ The SU1604 with firmware V3.00 makes 16 analog channels (1 ... 16) available which can be read and written to with the ANA commands. And thus AnaMIN and AnaMAX values are automatically adapted when ANA is allocated.

The following table provides an overview of the software features included with the various ECS summators:

Software Feature	U1604	U1601/2/3	U1600
ECS operating system	ECS V3.xx	ECS V2.xx	ECS V1.xx
Number of energy channels	64 (1 64)	64 (1 64)	32 (1 32)
H programs (background programs) P programs Q programs A variable (double) B variant (double)	32 (H 0 31) 32 (P 0 31) 32 (Q 0 31) 64 (A 0 63) 64 (B 0 63)	$\begin{array}{c} 32 \ (H \ 0 \ \dots \ 31) \\ 32 \ (P \ 0 \ \dots \ 31) \\ 32 \ (Q \ 0 \ \dots \ 31) \\ 64 \ (A \ 0 \ \dots \ 63) \\ 64 \ (B \ 0 \ \dots \ 63) \end{array}$	32 (H 0 31) 32 (P 0 31) <u></u>
EINT measurement data list Recording duration with 32 channels Recording duration with 64 channels	768 KB 120.5 days 62.1 days	512 KB 80.3 days 41.4 days	64 KB / 448 KB ⁷ 10.0 / 70.3 days 5.2 / 36.2 days
UDM – user definable menus ⁸	v	_	—

⁷ U1600 without/with memory expansion

⁸ UDM – user definable menus: for the implementation of extensive user-specific menus and applications (as of August 2017)

3 Device Description

3.1 SU1604 Device Overview

3.2 Channels/Calculations

64 software channels are available. You can specify the type of input for the channels via the CMODE channel parameters (0 \dots 4).

Cyclical Generation of all Channel Registers

Due to the fact that each channel has numerous energy data registers (33 registers without maximum values: Etot, EtotT1, EtotT2, Pmom, 10+1 times Eday, 12+1 times Emon, 4+1 times Eyear), only the most important summations are conducted continuously, and the less important ones in accordance with a rotating schedule.

For example, Etot is ascertained continuously but Emon-12 only infrequently (roughly every 30 ... 90 seconds). Power values other than Pmom are always calculated from energy values and thus don't have to be totaled up.

Channel Names

A name can be assigned to each channel which can have a length of up to 8 characters. The channel can be better identified for data processing and display purposes with the help of this name. This name also makes it possible to access a specific channel per program **system-wide**.

```
<A> Etot Motor5
```

From summator A: a channel with the name "Motor5" is searched for system-wide and this channel's total energy is displayed (see also ECL command: FINDER).

Virtual Channels

- Each unused channel is available as a virtual channel, in order to generate any desired sums or differences from physical inputs or other virtual channels. It doesn't matter which summators the channels are assigned to within the ECS LAN system!
- Unused physical channels can also be used as virtual channels, in which case even the maximum value registers of the corresponding physical channel are available.
- The synchronizing interval measurement data list can record data from virtual channels.

Differential Coupling (ECL commands dVSUM and dVIRT)

As of the moment of definition, incoming energy quanta (~ meter pulses) from the source channels are continuously summed up, and the summed up energy quanta are fed to the virtual channel as if they had actually just been measured. The virtual channel is thus decoupled from the source channels and data can be changed as desired. Application: logical coupling of the input signals (as if the corresponding input signals were connected to a single meter channel).

Example 1

Channel 26 at summator D: generates a cost center consisting of channels $1 \dots 5 + 8$ of summator B: weighted at 0.7 and channel 4 of summator C: weighted at 0.3

H1='B:dVSUM 1..5+8 0.7, C:dVSUM 4 0.3, D:VIRT 26='

Example 2

Channel 10 is equal to the balance of channels 1 ... 8 and the total sum of channel 9 (sum 1 ... 8 minus channel 9)

H2='dVSUM 1..8, dVSUM 9 -1, dVIRT 10='

Numeric Range

In order to achieve greatest possible accuracy, all internal calculation operations are conducted with 64-bit floating point numbers. As a result, 15 (!) significant decimal places are available.

Switching the Channel Display On/Off

The on/off function only determines whether or not a channel is present at the display when scrolling through channel data or in a read-out with "*" (ECL command: ONOFF). Otherwise, the channel's function is not influenced in any way.

Start/Stop Channel

The acceptance of an input's meter pulses is controlled with the start/stop function (ECL command: STARTSTOP).

- A channel generated with "differential coupling" can be influenced by means of an analog signal with the start/stop function.
- Due to the fact that a channel's binary input status is not influenced, this function can be used, for example, to avoid undesired counting of binary information.

Energy Metering

Meter pulses filtered in this way are integrated per channel in a temporary meter. Roughly once every 1 to 2 seconds, the meter values are converted to the corresponding energy values and the total energy registers are counted in as well. Pulses are converted to energy values in accordance with the following formula:

Energy Calculation

where:

$$U_{ratio} = \frac{U_{primary}}{U_{secondary}} \qquad I_{ratio} = \frac{I_{primary}}{I_{secondary}}$$

Electrical Power Billing

Instantaneous power is determined on the basis of the intervals between the incoming pulses. All other power values are calculated from the corresponding energy value in consideration of the respective time interval.

By default, the calculation of power is based on an energy unit of measure **per hour** (kWh). In the case of other frames of reference (e.g. liters per minute,) the P factor must be correspondingly adjusted (ECL command: PFACTOR). The standard value is 3600, and for the liters per minute example it would be 60.

Formula for calculating power from energy E and timespan dt:

P = E * Pfactor / dt

Only sensors which are connected via the LON network deliver already calculated power and energy values to the summators.

3.3 Inputs

Binary Meter Inputs

Twelve S0 inputs are available per S0 module (U1624).

SO IN 1	SO IN 2				
(a) (b)	(a) (b)				
SO IN 3	SO IN 4				
(a) (b)	(a) (b)				
SO IN 5	SO IN 6				
(a) (b)	(a) (b)				
U1624					
S0 IN 7	SO IN 8				
(a) I (b)	(a) I (b)				
SO IN 9	SO IN 10				
(a) I (b)	(a) I (b)				
SO IN 11	S0 IN12				
(a) I (b)	(a) I (b)				

SO IN 1 ... 12

- Six 4-pole connector terminals for two S0 inputs each.
- S0 input characteristics:
 Input voltage max 30 V input
- Input voltage = max. 30 V, input resistance = 5.1 k Ω , bipolar, electrically isolated
- Due to the fact that the utilized optocouplers are bipolar, connection polarity is irrelevant.

Debounce time and counting edge

Debounce time and the counting edge (trigger edge) can be separately configured for each of the 12 inputs. Sampling time over all of the up to 12 channels amounts to 1 ms.

- Debounce time is adjustable from 0 ms to 20 s in 1 ms steps, ECL command: PULSE
- "+" (1) counting edge: Counting when change occurs from level 0 to level 1, ECL command: EDGE

• "-" (0) counting edge: Counting when change occurs from level 1 to level 0 If an input is used as a binary Input, the selected debounce time applies to this operating mode as well. For example, if a debounce time of 1 s has been selected, only signals which remain stable at the "1" or "0" level for at least 1 second are further processed. The input status display at the control panel shows only the debounced signal levels.

3.4 S0 Outputs S1 ... S2

The two freely programmable S0 outputs make it possible to transmit messages in the event that certain conditions occur. Switchable voltage is limited to 50 V in this respect. Furthermore, the outputs can also be used as floating pulse outputs for remote transmission of meter values with the help of ECL background programs (see ECL command SOREL 1 ...2).

3.5 Self-Test

As longs as the electronics are functional and no system errors have been detected, the status LED and the status relay are on. If an error has occurred at the device electronics, the relay drops out and the LED goes out. A horn, which can be controlled with the status relay's NC contact, is then able to indicate the error status.

The current relay status is displayed in the status window (section 5.8 on page 28). The function test can be expanded by means of appropriate programming (ECL command: STATCHECK, further information in the online help via ? PFACTOR). For example, the output can already be deactivated (error status) when available 24 V supply power drops to below 16 V, or when the status of the lithium battery no longer assures reliable data preservation.

3.6 RS 232/485 Port

Communication with the host PC, radio controlled clock, terminal, COM server, modem or printer is made possible by the RS 232 serial port.

Access to All Measurement Data

A PC connected to the RS 232 port has full access to all of the system's stored measured values. **ECSwin** parameters configuration software running at a PC manages all ECS data and permits tabular data evaluation.

Connection Configuration

The RS 232 port is laid out with the DTE (data terminal equipment) configuration and the signals are available at a 9-pole D-sub plug connector. This DTE configuration corresponds to the same one that is commonly used for PCs and terminals. Refer to section 7 on page 54 concerning connector cable wiring.

3.7 Ethernet Port

In addition to the COM-1 and COM-2 ports, ECL inputs via TCP/IP are available as well (see section 6.10 on page 48).

3.8 ECS LAN

For applications which necessitate the use of more than 64 channels, several summators can be connected to each other via a multi-master-compatible RS 485 fieldbus (ECS LAN). Linking can be conducted by means of a 2-wire cable with bus or line structure. Maximum length per segment is 1200 m. Distances of several kilometers between 2 summators can be spanned with fiber-optic cable transmission paths based on 4-wire technology.

Up to 255 summators can be connected to the ECS LAN. And thus a maximum distance of roughly 300 km can be spanned without an additional booster.

Multi-Master System Architecture

The essential advantage of multi-master architecture results from the fact that each of the connected bus users has full access to the overall system's data and functions. This means that it's not necessary to select a single summator as the bus master

General Information Concerning ECS LAN

- The **connection technology** for the individual LAN segments is freely selectable and can be mixed as desired.
- Transmission speed is dictated by the maximum cable length in accordance with RS 485. The ECS LAN normally runs at 62.5 kBaud, and the maximum cable length is thus 1.2 km (see also section 6.6 on page 42).

- The transmission cable must be terminated at both ends (but nowhere else) with terminating resistors. The terminating resistors are integrated and can be activated and deactivated via the control panel. Correct functioning of the 2-wire connection can only be assured with integrated terminating resistors. No external resistors may be connected!
- Loop resistance of the transmission cable with 2-wire technology may not exceed 100 $\boldsymbol{\Omega}.$
- Up to **16 summators** can be connected to a bus segment. If the terminating resistors are correctly connected (see above), branch lines have been minimized and the loop resistance of the transmission cable is less than 100 Ω , up to 32 summators can be operated at a single segment.
- User statistics can be retrieved via the control panel (device status).

Bus Left, Bus Right

Each summator provides 2 complete ECS LAN ports. They're designated LAN L and LAN R. Each of these ports can be operated with either 2-wire or 4-wire transmission technology (RS 485).

2-Wire

A bus system within which several summators are connected to a common bus line must be set up with 2-wire technology.

4-Wire

4-wire technology is used where especially long transmission paths have to be spanned or where boosters are required, in which case only line-to-line connection is possible.

Connection Lengths (LAN bus)

If several summators (up to 16) are arranged in relatively close proximity to each other (total bus length of max. 100 m), bus connection with a twisted pair cable is recommended. Line-to-line connection with a twisted four-wire cable should not be set up until the distance between 2 summators is greater than 400 m (max. 1200 m).

Assignment of ECS LAN Connections

User Directory

Directory of ECS LAN Users

Each summator automatically prepares an internal directory (ECL command: DIR) of all interconnected ECS LAN users (insofar as unequivocal IDs have been assigned throughout the entire system). Each summator indicates it presence system-wide every 3 seconds with a so-called broadcast message, so that all summators which receive this message can correspondingly update their internal directories. If the message is not transmitted for a period of more then 20 seconds, the respective summator is removed from the internal directories.

Unequivocal Identification

An **unequivocal** summator ID must be assigned to each summator within the ECS LAN system. 255 different, freely selectable IDs are possible. An ID has the following format: A, A1 .. A9, B, B1 .. B9, .. , Z, Z1 .. Z4

System-Wide Access to Measurement Data

Example: You would like to retrieve total energy for channel 1 at summator **D1** from summator **A**:

<A> D1:Etot 1

3.9 LAN LED (LANL/LANR)

Two LEDs, one for bus left and the other for bus right, indicate error-free operation of the ECS LAN:

- If no ECS LAN users are connected, the LEDs don't light up.
- If one or more users are connected to the respective bus segment, the LED lights up.
- If two or more users have the same ID, the corresponding LAN LEDs blink at the users with the same ID. Exception: If the summators with the same ID are connected to the same LAN segment, no unequivocal error message is generated. For this reason, always compare the number of summators with the total shown in the user statistics when installing devices (control panel: device status).
- If the internal terminating resistor is not activated during bus operation, the affected LAN LED blinks.

3.10 LON Connection

LON is an intelligent bus concept which makes it possible for controllers, sensors and actuators to "talk" to each other. Quick and inexpensive wiring is achieved by means of intelligent decentralization. All of the nodes (users) are equipped with a neuron chip and communicate with each other via the LON Talk protocol. Data is transmitted via a standardized, floating, twisted pair cable which can be wired in bus, ring or star topology as desired (free topology!). The electrically isolating FTT10 transceiver used to this end is reverse polarity protected and transmits data at 78 kbps. Up to 63 nodes can thus be additionally connected to a U1604 summator via the integrated LON network. Energy values from the LON meters can be freely assigned to channels K1 to K64 via differential coupling.

3.11 LON LED

LON LED off	All LON channels deactivated (Haupttext on page 35)
Blinking LON LED	Error in communication with LON users
LON LED on	LON bus OK

4 Measurement Data

4.1 Overview of Available Measurement Data

The following measurement data are available for each meter input and each virtual channel:

Energy (cumulative as of a specified starting point)

ETot	Total energy regardless of tariff
ETotT1	Total energy for tariff T1
ETotT2	Total energy for tariff T2
ETotT1+T2	Total energy for tariffs T1 and T2

Energy (cumulative for specified time periods)

Elnt	Elnt-1]	Elnt-xx	Cumulative energy for the current and the last xx * intervals (measurement data list)
EDay	EDay-1		EDay-10	Cumulative energy for the current and the last 10 days
EMon	EMon-1		EMon-12	Cumulative energy for the current and the last 12 months
EYear	EYear-1		EYear-4	Cumulative energy for the current and the last 4 years

* Interval value depending upon memory depth

Maximum Values from the Synchronizing Interval Measurement Data (with date and time)

EMax	EMax-1	 EMax-xx	The xx * highest values
EMaxDay	EMaxDay-1	 EMaxDay-10	Maximum energy for the current and the last 10 days
EMaxMon	EMaxMon-1	 EMaxMon-12	Maximum energy for the current and the last 12 months
EMaxYear	EMaxYear-1	 EMaxYear-4	Maximum energy for the current and the last 4 years

Costs (cumulative as of a specified starting point)

CostT1	Costs for tariff T1
CostT2	Costs for tariff T2
CostT1+T2	Costs for tariffs T1 and T2

Power (mean values for specified time periods)

Pmom			Instantaneous power between the last 2 meter pulses
PInt	PInt-1	 Plnt-xx	Power for the current and the last xx * intervals (measurement data list)
PDay	PDay-1	 PDay-10	Mean power value for the current and the last 10 days

PMon	PMon-1
PYear	PYear-1

PMon-12	Mean power value for the current and the last 12 months
PYear-4	Mean power value for the current and the last 4 years

Maximum values from the synchronizing interval measurement data (with date and time)

PMax	PMax-1	 PMax-10	The 10 highest values for all measuring intervals
PMaxDay	PMaxDay-1	PMaxDay-10	Maximum power value for the current and the last 10 days
PMaxMon	PMaxMon-1	 PMaxMon-12	Maximum power value for the current and the last 12 months
PMaxYear	PMaxYear-1	 PMYear-4	Maximum power value for the current and the last 4 years

Summary of Available Measurement Data per Channel

Energy Values	Features	Maximum Energy Values	Maximum Power Values	Costs
Etot	Pmom			
EtotT1				CostT1
EtotT2				CostT2
EtotT1T2				CostT1T2
Eint	Pint	Emax	Pmax	
EDay	PDay	EmaxDay	PmaxDay	
EMon	PMon	EmaxMon	PmaxMon	
EYear	PYear	EmaxYear	PmaxYear	

Relationship Between Recording Duration and Number of Channels

of the Synchronizing Interval Measurement Data (measurement data list, format 0 ... 3):

4.2 Synchronizing Interval Measurement Data List

The energy values measured during a specific interval can be saved to a measurement data list. This interval (duration: 10 s ... 999 hrs., default: 15 minutes) is either derived from system time or the interval limit is determined by the edge of the meter pulse (default: channel 11). Energy measured during the interval (EINT) is entered to the list along with date and time. The mean power value for the interval (PINT) is calculated from EINT and the duration of the corresponding interval.

Formatting the Measurement Data List

Attention!

The contents of the measurement data list are deleted during formatting.

The number of entries in the measurement data list depends on the number of channels. The measurement data list can thus be formatted according to the desired number of channels. Formatting is only possible via an interpreter. The resolution of the data range is determined at the same time (ECL command: FORMAT).

Specifying the Number of Entries

The format command reserves space within system memory for the selected channels. In this way, the possible number of entries (records) is specified, but not the recording duration which depends entirely on interval time.

Example: Only channels 1 through 4, channels 17 and channels 21 through 23 will be recorded to the measurement data list.

If the format command is invoked without parameters, status information is read out to the measurement data list. In particular how many entries can be recorded in the measurement data list is shown here.

<A> FORMAT = 1...4 + 17 + 21 ... 23

<A> format

Format (0): 8 channels, 26,214 entries (= 273 days with an interval of 15 minutes) Channels: 1;2;3;4;17;21;22;23

Reading Out the Measurement Data List

The data saved to the measurement data list can be read out together with date and time via the serial port by means of ECL command EINT. The following example shows the read-out of all measurement data from channels 1 through 5 in ASCII database format:

<A> Eint/## 1..5 * ** 16.04.93;17:45:00;1;0.5;0.75;0.99;1.36 16.04.93;18:00:00;1.01;0.1;0.76;0.80;0.83 16.04.93;18:15:00;0.99;0.48;0.75;1.02;1.28 :

Retrieving a Specific Entry

The ECL command INDEX makes it possible to read out data as of a specific date. The following example (in plain text read-out) shows the value from the measurement data list for channel 1 on 16 April 1993 at 6:15 p.m.:

<A> Index 16.04.93 18h15, Eint/ 1 . 16.04.93 18:15:00 : Eint-863 (01:Motor7) = 0.99 kWh

Memory Structure of the Measurement Data List

The measurement data list is a ring buffer of fixed size which is correspondingly formatted. It's accessed by means of an index number. Index 0 always makes reference to the most up-to-date, current interval. Index 1 makes reference to the last interval and index 2 to the next to last etc. The ECL command INDEX converts a timestamp into the corresponding index number.

Ring Buffer

When memory capacity has been exhausted, the oldest entry (with the highest index number) is deleted in favor of the new entry. Index 1 is thus assigned to the interval which has just been concluded, and the index numbers of all previous entries are increased by 1.

Measurement Data List Value Range

Limitation of Resolution due to Data Reduction

All of the summator's data registers have an internal width of 8 bytes (64-bit floating point). However, this has to be converted to a data format with a width of 2 bytes for the data list (as of Eint-1), for which overall recording duration is directly dependent on available memory capacity (which is associated with reduced accuracy). The fact that only energy values are saved (and not power values because these are calculated) results in the following limitation of the numeric range with standard "0" formatting:

Data range encoding: (0: standard. Resolution specified in [])

0:0...+/-0.8191[0.0001]...+/-81.91[0.01]...+/-8191[1]...+/-819100[100]

1 : 0....+/-8.191[0.001]....+/-81.91[0.01]...+/-819.1[0.1]...+/-8191[1]

- 2:0....+/-16383[1]......+/-163830[10]
- 3:0.....+32767[1].....+327670[10]

```
4 : 0..+/-99999999 [8 decimal places, smallest place: 1E-6]
```

If the number is $>$	99999999, the	leading places are omitted.
1001507000	04507000	Outleast and the first Outleast

1234567890	> 3456/890	Omission of the first 2 places
12345678.9	> 12345679	8. Place is 5/4 rounded
1234567.8	> 1234567.8	No limitation
12.345678	> 12.345678	No limitation
12.3456789	> 12.345679	8. Place is 5/4 rounded
1.23456789	> 1.234568	Only 6 places after the decimal (see below)

Notes

- Encoding types 0, 1, 2 and 3 use two bytes per entry, but encoding type 4 uses 4 bytes per entry and memory duration is thus cut in half.
- Encoding type 4 is only available as of V2.46, and interval data with type 4 encoding cannot be read out from summators with older firmware versions!
- With encoding type 4 the smallest resolution is 1E-7, and with faster read-out using ext. '#' resolution is 1E-6 (the 6th place after the decimal is 5/4 rounded if required).

5 **Operation** (display menus)

The U1604 summator is not equipped with any display or control elements. ECSwin software is used for communication and parameters configuration. The display in the panel mode corresponds to menu prompting for a U1601 summator.

Extreme care is required when changing the parameters of serial ports COM1 and COM2.

In the case of different settings no communication is possible between the PC and the summator.

Only one interface should be changed so that the summator can still be controlled with the other. COM2 is set to ECL or ECL+HP to this end.

5.1 Menu: Overview (main display menu)

The following applies in general in the display submenus:

Switching 1 channel further: (A) , 10 channels further: (F1) (F5)

5.2 Menu 1: Display Total Energy, Power, Costs

• Multi-Channel Displays (all channels with only 1 measured value)

			_(F2	<u>2</u>)-			(F4	γ.		
K	# Name	Pmom		K	# Name	Pmom	17	Kŧ	[‡] Name	Pmom
K#	Name	ETot		K#	ETot			K#	ETot	Start Time
01	Motor-01	80.7		01	80.7321	kWh		01	23.12.08	10:27:00
02	Room-16	22.2		02	22.2475	kVarh		02	23.12.08	10:28:10
03	Cooler 1	3456788.2		03	3456788.2458	Wh		03	23.12.08	10:16:33
04	Z1422152	3422654.1		04	3422654.1698	Wh		04	23.12.08	11:45:00
5	Sun 9-20	24.6		05	24.6587	MWh		05	23.12.08	10:27:00
06	Room 25	180.3		06	180.3470	MWh		06	23.12.08	10:27:00
07	Room 27	21365.9		07	21365.9487	kWh		07	23.12.08	10:27:00
80	Hall 33	234546.3		08	234546.3414	kWh		08	23.12.08	10:27:00
09	House 31	21.7		09	21.7774	kWh		09	23.12.08	10:27:00
10	Hall 22	2356.4		10	2356.4444	kWh		10	23.12.08	10:27:00
F1:	F2:←→ F3:] F4: P F5:¥		F1:		1: P F5:¥		F1:] F4: P F5:¥
								Cha	nnel selection	as above

• Single-Channel Displays (1 channel with all measured values)

Channel 01 ETot	01 Motor 01 ETot	80 7321	LON kWh	—— Channel Mode
Pmom	Pmom ZW 1	10.7221 02376.84	kW kWh	Further Measured Values
Full Name, Channel 0 1	Asynchronous F1: ★ F	motor no. F3:[]]	1 F5:¥	ETotT1, cost T1 ETotT2, cost T2 ETotT1T2, cost T1+T2 EInt, PInt, E /Day/Mon/Year Emax, Pmax /Day/Mon/Year

5.3 Menu 2: Display Interval Energy

5.4 Menu 3: Display Maximum Interval Energy Values

5.5 Menu 4: Display Analog Inputs/Outputs

• Multi-Channel Displays

			(F4	4) —			(-	-)∕		
K#	# AnaMIN	[]	\sim	K#	AnaMin N	[]		/ K#	# AnaMin R	[]
K#	AnaMAX	[]		K#	AnaMaxN	[]	- 1	K#	AnaMax R	[]
K#	Ana	[]		K#	Ana N	[]		K#	Ana R	[]
E01 E02 E03 E04 E05 E06 E07 E08 E09	2356.44 22.24 3456788.24 3422654.16 24.65 180.34 21365.94 234546.34 21 77	kW kW kW kW kW kW kW kW		E01 E02 E03 E04 E05 E06 E07 E08 E09	0.235 0.222 0.345 0.342 0.024 0,180 0.213 0.234 0.213		*	E01 E02 E03 E04 E05 E06 E07 E08 E09	2.35 2.22 3.45 3.42 0.24 1.80 2.13 2.34 2.14	
E10	80.73	k₩ ≠		E10	0.403	۶		E10	8.07	mA €
F1: 🕿	F2: F3:	:N F5:¥	F	=1: *	F2: F3: F4	: R F5:¥		F1: *	F2: F3:	4: S F5:¥
								Chann	el selection as a	bove
K#	Name	LonANA								
11 12	C21 Advance 1	22.8 73.4								

•	Single-Channel	Display	/S
---	----------------	---------	----

→ F3:

F1: ★ F2:←

F5:∗

5.6 In-Service Function

An error bit is used in order to inform the analysis software that a channel is not reading out valid data because, for example, it's currently being calibrated (ErrChan 24: in-service). The in-service function is activated by configuring the INSERVICE feature: Example: INSERVICE FEATURE = 3

This function is only effective per channel in mode 4 (= LON).

INSERVICE	Explanation
0	In-service not available (default setting)
1	In-service available
3	Same as 1, but direct jumping is also possible from the individual basic display to SETUP CHANNEL menu 4 by pressing the F4 key
5	Same as 1, but in-service can only be activated for one channel
7	Same as 3, but in-service can only be activated for one channel

In-service can be configured with CHANNEL DATA under SETUP in menu 4: In-service OFF / In-service ON / ALL OFF

Z1: U1601H	ebl	12:32:10 PN
-SETUP-	MODE	E:LON-ANA
CHANNEL Menu 4		INSERVICE ON
Channel 21		
Channel	Pl	ULSE DUR. 50 ms
change ▲ ♥		EDGE 1:

In-service activation is indicated in the individual basic display.

Z1: U1601He	bl 12:32:10 PM
21¦U1661.1 ¦	¦LonA
ETot	15,615 kW
Pmom	0,014 kW
<<<< In-Servio Cold water Te	ce ON >>>> 4

The *ERIS enumeration is used specifically with the in-service function. Example: All, Channel& *eris reads out all channels with the in-service status.

¹ Is only displayed when the in-service function is switched on.

5.7 Menu: Display Applications

To Main Menu

15 programs can be specified here which you have created by means of ECL Interpreter and stored to the summator via the interface.

These involve 15 of 32 possible P programs which execute an action one-time only after pressing a key, but don't run any cyclical tasks: e.g.

- execute calculations (weighting of energy values)
- Read-out of certain energy channels via the interfaces

5.8 Menu 5: Display Status Menu (time, relay, errors, interfaces)

• Display Time, Date, Switching Outputs

Status displays

1 node ERROR Termination: 50 Ohm One meter (node) has been found on the LON bus.

6 Basic Configuration

6.1 Overview of Setup Parameters

6.2 Setup Selection Menu

DELETE menu (see page 43)

6.3 Summator Parameters (IDs, intervals, tariffs, outputs ...)

⁽preceded by password prompt)

Date/Time

After entering the time to the first line, the cursor jumps to the date line. Entries are immediately active at the integrated real-time clock for which reason the entry cannot be aborted. ECL command: TIME/DATE

Summator Name

The summator name must have a length of 1 to 8 characters. If no name is entered, "-" is automatically assigned as the name. The following characters are possible: _+ – 0 ... 9 A ... Z a ... z . ECL command: SUMMATOR

Summator ID

Unequivocal IDs must be assigned within an ECS LAN. The same ID may never be assigned twice. Up to 255 IDs are possible. The character string has a maximum length of 2 characters. If a blank space is entered as part of the character string, the character string is cut off as of the blank space after the entry has been acknowledged (F4). An ID has the following format: A, A1 ... A9, B, B1 ... B9 ... Z, Z1 ... Z4.

Interval Time

Entry range for the synchronizing interval: 10 seconds ... 999 hours (entry in seconds). ECL command: INTERVALL (ITV)

Interval Source

The synchronizing interval can be generated in three different ways:

Time: The intervals are generated in accordance with the selected interval duration.

Program: An interval is only generated with the ECL command SYNC=.

Channel 11: A meter input serves as a binary input for the synchronization signal. The selected pulse duration and edge are taken into consideration.

ECL command: INTERVALSOURCE (IS)

Source (tariff source)

The valid tariff, T1 or T2, can be selected in two different ways:

Channel 12: A meter input serves as a binary input for specifying the valid tariff. The selected pulse duration is taken into consideration. The edge parameter is used to specify which level is assigned to tariffs T1 and T2. If the "+" (1) edge is selected, logical zero (0 V at the input) corresponds to tariff T1, and logical one (24 V) to tariff T2. The opposite applies when the "-" (0) edge is selected.

Program: The valid tariff is specified with ECL command TARIFF=1 or TARIFF=2. These assignments only work if "Program" is selected as the source. ECL command: TARIFF-SOURCE (TS)

Tariff Unit

The character string has a maximum length of 4 characters. The tariff unit must have a length of at least one character. ECL command: TUNIT

T Fixed Point

Specifies the number of places after the decimal which will be used for displaying accrued energy costs. ECL command: $\ensuremath{\mathsf{TFIX}}$

Cost Factors T1 and T2

The procedure for entering the cost factors for tariffs T1 and T2 is the same. The cost factor is used to convert energy to costs. This conversion can be used for the tariffs' total energy registers: ETotT1, ETotT2 and ETotT1T2. Entry ranges for cost factors: 0.000 ... 99.999 ECL command: COSTFAC1 COSTFAC2

Password

A submenu appears here for the selection of passwords for 5 users (see page 44).

LCD Contrast

This menu is used to set contrast at the LCD. 20 steps are possible (-5 \dots +15). The default value is 0 which provides good results in most cases.

Language

All menus, ECL messages and online help texts are displayed in the selected dialog language. ECL command: LANGUAGE

Date Format

Three display formats are possible: dd.mm.yy, mm/dd/yy, mm-dd-yy.

S0 Mode

selection of the operating mode of S0 outputs S1 ... S2. In the PROG position, a user program (H/P program) determines the status of the outputs. ECL command: RELM.

S0/Level

The sensitivity of the S0 input channels (S1 \dots S2) can be specified in steps (10, 25, 50, 70%). ECL command: LEVEL

Bootstrap Loader and Tests

Invocation of the bootstrap loader: in the bootstrap loader menu (see page 45).

LED test: Display of several important LON parameters

LED test: Checks the 4 LEDs for correct functioning. All 4 LEDs light up during this test.

(Channel) Mode

Depending on the type of summator, the following selection can be made in the following submenu:

U1604: Channel mode 0 ... 8

- 0: OFF: The channel is shut down entirely and all functions are off.
- 1. ANA. The U1604 is not equipped with an analog module.
- 2: $P \rightarrow E$: $PMOM=ANA \rightarrow ENERGY$ (see section 5.2)
- 3: Meter: A binary input quantity in accordance with the S0 standard is used for energy measurement (COUN) (see section 5.2).
- 4. LON. Energy measurement data are fed to different LON users within the system via the interface
- 5: LON ANA Analog values via LON for A2000, A210/A230, DME400, U1661, U168X, U128X W1, U138X W1, U228x W1 and U238x W1 (see section 5.5)
- 6: LON-PE same as LON-ANA, plus energy is also calculated based on LON analog values (see section 5.5)
- 7: LON-INP binary inputs via LON for U1660
- 8: LON-REL relay outputs via LON for OCL210

Channel Names

A name can be assigned to each physical channel for improved identification. The name doesn't have to be unique, unless it will be used as a field name in a database. The character string has a maximum length of 8 characters, and has to be at least one character long, ECL command: CHANNEL

Long Name

An extended channel name with up to 20 characters. ECL command: LNAME

E Unit, P Unit

A freely definable energy unit (e.g. kWh) and a power unit (e.g. kW) can be assigned to each physical channel. The character string has a maximum length of 4 characters, and has to be at least one character long.

ECL command: EEINH, PEINH

(Channel) Visible

For each physical channel it can be specified whether or not it will be visible in the case of queries executed at the control panel or in "*" lists in the interpreter mode. This has no effect on the function of the channel! For example if only channels

1 ... 3 are activated, you can only retrieve values from these 3 channels in the normal display - the device appears to have become a 3-channel unit. Even "Etot*", when queried in the interpreter mode, displays total energy from these three channels only. If all channels are shut down, date and time appear in the normal display. Entries become effective immediately and don't have to be acknowledged. ECL command: EINAUS

Start/Stop Channel

The acceptance of an input's meter pulses is controlled with the start/stop function. A channel generated with "differential coupling" can be influenced by means of an analog signal with the start/stop function. Due to the fact that a channel's binary input status is not influenced, this function can be used, for example, to avoid undesired counting of binary information. Entries become effective immediately and don't have to be acknowledged. ECL command: STARTSTOP (STSP)
Fixed Point

For each physical channel it can be specified with how many places after the decimal point energy or power values should be displayed (not calculated).

(0) no places after the decimal point0(2) two places after the decimal point0.00
(1) one place after the decimal point0.0(3) three places after the decimal point0.000
Entries become effective immediately and don't have to be acknowledged.
ECL command: CFIX

C Factor

This makes the following possible, for example: The measured quantity is consumption in cubic meters. This should be displayed as standard cubic meters [Nm³] which makes a correction factor necessary. The C factor is thus a multiplication factor for calculating the energy value of a channel.

Meter Constant

The meter constant can be separately defined for each of the physical channels. It indicates how many meter pulses a connected meter delivers per kWh and is used in the energy calculation formula (see page 10). ECL command: MCONST

U Ratio, I Ratio

The factors for U ratio and I ratio can be separately defined for each of the physical channels. Calculation formula: see page 10.

Change plus or minus sign: Press "<<" (F2) when the cursor is all the way to the left. Entry range for U ratio and I ratio: 0.000 ... 99,999.999

A channel can be disabled for meter pulses by setting the Urat or Irat factor to zero. However, it's better to use the start/stop function. ECL command: URAT, IRAT

le p

Note

Detailed descriptions of URAT and IRAT are included in the commands list (3-348-870-03).

P Factor

The P factor can be separately defined for each of the physical channels. Calculation formula: see page 10.

Change plus or minus sign: Press "<<" (F2) when the cursor is all the way to the left. Entry range for the P factor: 0.001 ... 99,999.999 ECL command: PFACTOR

Pulse Duration

The duration for which a pulse must be applied to a channel's S0 input in order to be recognized as an S0 pulse (debounce time). ECL command: PULSE

Edge

Specifies whether the meter pulse will be trigged at its positive (1) or negative (0) edge. ECL command: EDGE

To Setup Channel Parameter (menus 5 ... 8)

Mode

see page 36 above

LON Channel

LON user U2289 with the selected neuron ID has 36 channels. Of these, channel 40 (active energy import) is represented at local channel 1, when channel 1 is set to the LON mode.

LON Activity

The LON user can be shown (run) or hidden (stopped) with this function, without having to shut down individual channels.

Neuron ID

This is the globally unique address of a LON user and consists of a 12-place hexadecimal value. The summator automatically establishes contact with the LON user to which this address is assigned. If the local channel is set to the LON mode, the remote "LON CHANNEL" (channel 40 in the above example) is represented.

LON Factor, LON Offset

The values of LON users are standardized to a value of -1 ... 0 ... +1. The characteristic range curve can be adapted as desired to the measuring task with the help of the LON factor and LON offset parameters. ECL commands: LONFACTOR, LONOFFSET.

ANA Factor, ANA Offset

The analog output values are standardized to a value of -1 ... 0 ... +1.

The characteristic range curve can be adapted as desired to the measuring task with the help of the Ana factor and Ana offset parameters. ECL commands: ANAFACTOR, ANAOFFSET.

Preceding Sign

Specifies the polarity of the on and off signals. And thus +/- corresponds to a positive/ negative signal of the respective input/output. ECL command: ANASSEL.

I/O Range

Specifies the ranges of the respective analog input. Possible ranges include: S0.

Unit Selection

You determine in which unit the channel's input quantity will be displayed (none, energy, power, analog value). ECL command: ANAUSEL

A Unit

Freely specifiable dimension for the representation of the measured quantity, if it's measured as an analog value, e.g. kW, °C, m³, mA. 5 places are possible. ECL command: AUNIT

ANA Fixed Point

For each physical channel it can be specified with how many places after the decimal point the analog measured quantity should be displayed (not calculated).

(0) no places after the decimal point 0
(2) two places after the decimal point 0.00
(1) one place after the decimal point 0.0
(3) three places after the decimal point 0.000
(9) floating-point representation

Entries become effective immediately and don't have to be acknowledged.

ECL command: ANAFIX

Resolution

of the 12 analog input channels E1 ... E12. ECL command: ANARESO

ECS LAN via COM

If a 4-wire ECS LAN connection has to be set up by means of an asynchronous V24 interface, a new mode is available for the serial ports as of V2.48:

LAN-R or LAN-L.

Example: Two devices need to be linked by means of a TCP/IP network at the ECS LAN level. Two COM servers are used to this end, each of which is connected to one device via RS 232 port and networked via Ethernet. COM servers transparently forward characters at the RS 232 port to the assigned COM server.

As soon as LAN-R or LAN-L is selected in the setup menu from COM-1 or COM-2, the ECS LAN data stream is redirected to this COM port. The interface parameters used by the COM port including baud rate, parity and handshake are then decisive, and not the previous ECS LAN settings any more.

Recommendation: highest baud rate (115,200), parity off, handshake RTS/CTS.

The selected settings must coincide with the settings of the interconnected COM server, but they can differ from those of the partner if necessary.

Please note that the currently unused ECS LAN may/should no longer be utilized. It must also be assured that the terminating resistor is activated for 2-wire parameters configuration, so that no ESC LAN errors can occur.

Special Case: Use of COM and ECS LAN Connection

The ECS LAN connection is shut down in the "ECS LAN via COM" mode. Outgoing frames are transmitted via the corresponding COM port, as well as via the ECS LAN port. Incoming frames from both ports are processed. Nevertheless, this is not a star hub configuration, because the two ports (COM and ECS LAN) don't "see" each other.

6.5 LON Menu

6.6 ECS LAN Menu

A 2-wire cable is normally used (terminals 45 and 46 or 49 and 50) – only in this way is bus configuration possible with several users on the same bus line. However, the integrated terminating resistors in the first and the last device on the bus line have to be activated to this end. Correct functioning of the bus is not possible without terminating resistors (bus LEDs LAN/L and LAN/R blink).

For long transmission paths or where boosters are required, 4-wire transmission technology can also be used (only line-to-line connection is possible in this case). The required terminating resistors are activated automatically The standard baud rate is 62.5 kBaud.

Comment

Additional instructions on configuring the port (SET... type parameters) can also be found in the commands list (3-348-870-03).

6.7 SETUP Submenus (Edit, Delete, Outputs, Bootstrap Loader, Password)

EDIT Menu (example)

DELETE Menu

Password Menu

Passwords consist of a combination of F1 \ldots F5 and must always have 6 places.

Upon delivery, all passwords have been deleted: all users can change parameter settings. If this needs to be prevented, you can enter passwords for 5 users:

Enter a password for user 1 (master) first, after which you can then enter passwords for the other users (2 through 5).

Afterwards, the device is open for 5 minutes without being operated.

Thereafter, or after a device reset, user registration is once again enabled.

Each registered user can change his or her password as desired.

After logging in with the correct password, the user (only the logged in user) is able to make changes for 5 minutes even if none of the keys are activated.

If password protection should be eliminated for all users, user 1 (master) enters special password "111111".

The system deletes all passwords and parameter settings are enabled for all users.

Note 🐼

See also the commands list (3-348-870-03) concerning the password parameter.

SO/Relay Outputs Menu

6.8 Firmware Update

Installing new firmware is only possible via the RS 232 COM-1 port.

ECSUpdate.exe software with correctly configured INI file (ECSupdate.ini) is required on the PC. The previous program for the U1601/2/3 (Update32.exe) cannot be used. However, the new program supports old U1601/2/3 summators.

In order for the ECSupdate.exe PC program to be able to install the firmware, the bootstrap loader mode has to be activated at the U1604. Proceed as follows to this end:

- Press and hold the SET key for 5 seconds, or hold it depressed while switching power on.
- LED 1 (the top LED) lights up (with brief inverting once per second) \rightarrow 115,200 baud.
- Other baud rates can be selected by repeatedly pressing the SET key. After pressing the key several times, selection starts over again at 115,200 baud (LED 1 lights up):

115,200	230,400	460,800	921,600	9,600	19,200	38,400
1	1	1	1			
	2	2	2			2
		3	3		3	
			4	4		

The correct firmware version is then selected with the PC program and the configuration of the COM port and the associated components is checked. Firmware uploading is started after acknowledging with OK.

The LEDs light up continuously during booting, and after several seconds (depending on the baud rate) they're interrupted repeatedly for roughly 1 to 2 seconds. After booting has been completed, the PC program automatically executes a reset and thus restarts the device.

If any problems should occur, this reset can also be forced at the device: Reset: Press and hold the SET key until all LEDs go out or power off/on.

Caution: Partially uploaded firmware is not functional and must be fully uploaded without delay. Nevertheless, the bootstrap loader can generally be started even if the firmware is not functional.

Time required for booting depends on the selected baud rate (approximate values: roughly 3 minutes at 115 kBaud and roughly 35 seconds at 921 kBaud).

Recommendation for selection of the ideal baud rate for the COM-1 port:

- If the PC is equipped with an integrated RS 232 port, the drivers (hardware) are usually not capable of using baud rates of ≥ 230 kBaud → use 115,200 baud.
- If the USB RS 232 converter cable (with FTDI chip directly in the USB plug) is used, the fastest available baud rate of 921,600 baud can (usually) be used without any trouble.

Application of Programming Cable Z302V

The cable requires compatible Windows drivers which, depending on the Windows version, are installed automatically upon initial contact with the PC.

As of Windows 7, the driver is installed automatically in most cases. Windows 10 already includes this driver.

If the driver has been installed correctly, the user only has to designate the desired COM port. The system automatically assigns a COM port number, which can or must be changed in the device manager.

This procedure is described in the short-form operating instructions under chapter 5 "COM Settings" and in the following chapter. An excerpt thereof is given below:

Device Manager

- \rightarrow Terminals (COM & LPT)
- $-\!\rightarrow$ USB Serial Port (COM1) \rightarrow
- $--\rightarrow$ Properties of USB Serial Port (COM1)
- $---\rightarrow$ Connection Configurations \rightarrow Extended ...
- --- \rightarrow Extended Settings for COM1 \rightarrow
- ---- Select COM1, COM2, COM3, ...

Please refer to the following websites for further information on the drivers:

http://www.ftdichip.com/Drivers/VCP.htm

The easiest way to install the drivers (32 and 64 bit) – UNLESS IT IS CARRIED OUT AU-TOMATICALLY – is to use "setup executable" under the following address:

http://www.ftdichip.com/Drivers/CDM/CDM21228_Setup.zip

6.9 COM Settings

COM1 (RS 232 full-duplex) default setting:

Baud rate: 115,200 baud (9600, 19,200, 38,400, 57,600, 76,800, 115,200, 230,400, 460,800, 921,600) Handshake: RTS/CTS (-, RTS/CTS, XON/XOFF) Parity OFF (off, even) Mode: ECL (OFF, ECL, DCF ...)

Attention!

Changes to the setting may render the device unusable, insofar as the faulty settings cannot be corrected via another correctly functioning interface.

Recommendation for selection of the ideal baud rate for the RS 232 COM-1 port:

- If the PC is equipped with an integrated RS 232 port, the drivers (hardware) are usually not capable of using baud rates of ≥ 230 kBaud →use 115,200 baud.
- If the USB RS 232 converter cable (with FTDI chip directly in the USB plug) is used, the fastest available baud rate of 921,600 baud can (usually) be used without any trouble.

Recommendation for selection of the ideal baud rate for the RS 485 COM-2 port:

- This RS 485 port works in the half-duplex mode no handshake is possible for which reason this function is always deactivated. And thus under certain circumstances, the baud rate must be selected such that no buffer overflow can occur (usually no problem with ECL protocol).
- With an FTDI chip-based USB RS 485 converter, the fastest available baud rate of 921,600 baud can be used without any trouble.

Tip: The COM port for FTDI-based USB – RS 485 converters can be permanently assigned in the device manager, and management of two or more virtual COM ports can thus be optimized:

Device Manager

- \rightarrow Connections (COM & LPT)
- \rightarrow USB Serial Port (COM1) \rightarrow
- $--\rightarrow$ Properties of the USB Serial Port (COM1)
- $---\rightarrow$ Connection Settings \rightarrow Advanced ...
- $-\!-\!-\!\rightarrow$ Advanced Settings for COM1 \rightarrow
- ---- Select COM1, COM2, COM3 ...

6.10 Ethernet Port

In addition to the COM-1 and COM-2 ports, ECL inputs via TCP/IP are available as well. After successfully opening one of the TCP-IP sockets from a PC, characters can be transmitted in both directions, as if connection had been established via a COM port (like a COM server).

Default IP Settings and Ports

IP address:	192.168.0.50
Netmask:	255.255.255.0
Gateway:	192.168.0.1
COM-4 port:	5004 (mode = ECL)
COM-5 port:	5005 (mode = ECL)

ECSWIN Settings

If ECSWIN is used, the "W&T-COM-Server" option must be selected. This is the settings dialog box for COM-4 with the default settings:

🖀 Eintrag editieren 🛛 🗙							
Eintrag TCP-5004=192.168.0.50;5004;WUT							
<u>N</u> ame	TCP-5004						
<u>H</u> ost	192.168.0.50						
<u>P</u> ort	5004 🚖						
_ <u>O</u> ption_		1					
⊂ o <u>h</u> ne		🖌 οκ					
C FELANIP lokal starten							
C ECODIENST IIII Autrenuizierung							

Useful ECL Commands for IP Administration

 Set IP:
 IP2UL 192.168.0.50, SYSIP = .

 Set netmask:
 IP2UL 255.255.255.0, SYSIPNM = .

 Set gateway:
 IP2UL 192.168.0.1, SYSIPGW = .

 Note: These setting correspond to the default settings after a master reset.

Query MAC:	SYSMAC48
Query IP:	SYSIP% %rpw
Query netmask:	SYSIPNM% %rpw
Query gateway:	SYSIPGW% %rpw
Tip:"%rp" prints a l	ong number as IP address: Sysip-, ! %rp!

TCP/IP Settings in the Control Panel

All adjustable IP parameters can also be set with the control panel – all IP parameters and the status of COM-4 ... can be checked in the status view (see graphic above).

A:U1604	22:59:10
-SETUP-	RELAIS-MODE
Menü4	IP-ADRESSE
	IP-NETMASK
	IP-GATEWAY
	TESTS

B:11604	22:56:54
← TCP/IP-	-STATUS →
IP-Adresse: 192.1 Subnet-Mask 255.2 Gateway: 192.1	68.0.50 255.255.0 168.0.1
MAC:00-1E-0	0-A3-3F-B2
COM-4 Port: COM-5 Port:	5004 [] 5005 []

6.11 Relays and SO Relays (SO-OUT)

The U1604 makes two S0 semiconductor relays (relay/S0-OUT 1+2) available:

U1604	Read/Write Status	Read/Write Relay Mode
Relay 1 / S0-OUT 1	REL 1 or SOREL 1	RELM 1
Relay 2 / S0-OUT 2	REL 2 or SOREL 2	RELM 2
Relay 3 (prepared)	REL 3	RELM 3
Relay 4 (prepared)	REL 4	RELM 4
Relay 5 (prepared)	REL 5	RELM 5
Relay 6 (prepared)	REL 6	RELM 6

Comparison with U1601/3 (relays 1+2, S0 semiconductor relays 3 ... 6):

U1601/3	Read/Write Status	Read/Write Relay Mode
Relay 1	REL 1	RELM 1
Relay 2	REL 2	RELM 2
S0-0UT 1	REL 3 or SOREL 1	RELM 3
S0-0UT 2	REL 4 or SOREL 2	RELM 4
S0-OUT 3	REL 5 or SOREL 3	RELM 5
S0-OUT 4	REL 6 or SOREL 4	RELM 6

The S0 relays are laid out as NO contacts (max. 50 V DC, 200 mA, bipolar). Assignment of the value 1 causes the S0 relay to close.

Assignment is made as follows: REL $\langle rel \rangle = \{0, 1\}$

RELM <*rel*> = <*mode*> is used to set the relay's operating mode:

- $0 \rightarrow always off$
- $1 \rightarrow$ always on
- $2 \rightarrow$ changeable (default)

Relays 3 through 6 have been prepared – values can be assigned and settings can be selected, but they don't have any effect.

S0 Pulse Output

Pulse sequences can be read out with the S0 relays which generate equivalent S0-compatible pulses in accordance with the change to the energy value of a given channel $(1 \dots 64)$.

Associated commands:

S0PCH <rel> = <source_channel></source_channel></rel>	(specifies the target relay and the source channel)
SOPDELTA <rel> = <energy_per_pulse></energy_per_pulse></rel>	(indicates the energy quantum for which
	1 pulse is generated)
SOPMS <rel> = <pulse_duration_ms></pulse_duration_ms></rel>	(duration of one pulse in ms)

Mapping the Status of the U1604 to Relay 1 or Relay 2

When the U1604 basic module is used without the U1614 power pack module and external 24 V auxiliary power is fed directly via the TBUS, no status relay is available. In order to make a status output available for this configuration, the status of the U1604 can be mapped to relay 1 or 2.

Left	Тор	Right
	TBUS STATUS	
	TBUS-	
	TBUS+	
	GND	
	+24V	

Feeding of 24 V DC Auxiliary Power Directly via the TBUS

The status is mapped via a so-called feature.

Features are stored to non-volatile memory at the U1604 and are **not** deleted in the event of a simple or an extended master reset.

Activating status mapping to relay 1:

STATRELMAP feature = 1

Activating status mapping to relay 2: STATRELMAP feature = 2

Deactivating status mapping (default): STATRELMAP feature = 0

Querying all active features / all available features:

FEATURES	11	list	of	all	active	features
FEATURES	11	list	of	all	possibl	e features

Notes:

- Features are usually not part of the summator's parameters configuration.
- The command is: FEATURE

 As soon as mapping is active, the status of the affected relay is controlled internally via RELMode (0:OFF→STATUS ERROR, 1:ON→STATUS OK).
 RELM assignments are possible but have no effect.
 The value of REL is not affected by mapping – it can be changed via assignment but without effect.

RELM of a mapped relay cannot be changed in the SUMMATOR setup menu – menu
 4 – RELAY MODE – "[0] STATUS" or "[1] STATUS" is displayed.

Attention!

If 24 V DC auxiliary power is supplied externally, the U1614 power pack module may not be used!

6.12 Basic Software Configuration

Upon shipment from the factory or after a master reset, the device is configured as follows:

Designation		Parameter	Value
Summator name		SUMMATOR	U1604
Designation	*	SETID	A
Synchronizing interval		INTERVAL	15 minutes
Interval source		IS	Time
Tariff source		TS	Program
Tariff unit		TUNIT	EUR
Tariff fixed point		TFIX	2
Cost factor, tariff 1		COSTFAC1	0.20
Cost factor, tariff 2		COSTFAC2	0.15
Password	*	PASSWORD	
LCD Contrast		-	5
Language selection	*	Language	German
Relay mode		RELM	2 (per program)
Level		LEVEL	1
Channel Mode		CMODE	Channel 1 12: METER 13 14: ANA 15 64: Off
Channel Names		CNAME	Channel x
Long name		LNAME	Long name, channel x
Energy unit		EUNIT	kWh
Power unit		PUNIT	kW
Visible		ONOFF	ON
Start/stop Function		STARTSTOP	START
Channel fixed point		CFIX	2
C factor		CFACTOR	1
Meter constant		MCONST	1
Voltage transformer transformation ratio		URAT	1
Current transformer transformation ratio		IRAT	1
P Factor		PFACTOR	3,600
Pulse Duration		PULSE	20 ms
Edge		EDGE	1 (+)
LON activity		LONSTOP	0
Neuron ID		LONID	000 000 000 000
LON terminating resistor	*	SetLON	50 Ω / 100 Ω / 0FF
LON SUBNET/NODE	*	LonSUBNODE	S001N126 (subnet = 1, node = 126)
LON TIMING CODE		LonSTATTIMing	9 (384 ms)
LON POLL DELAY		LonPOLLDELay	0
LON sub-channel		LONCHAN	1
LON factor		LONFACTOR	1
LON offset		LONOFFSET	0
C factor		CFACTOR	1

Designation		Parameter	Value
Ana factor		ANAFACTOR	1
Ana offset		ANAOFFSET	0
Ana sign		ANASSEL	0 (±)
Select ana unit		ANAUSEL	2
Ana unit		AUNIT	kW
Ana mode		ANAMODE	3 (meter)
I/O range	*	ANAMODSEL	3 (SO)
Ana fixed point		ANAFIX	2
Resolution		ANARESO	2,000
COM1 mode	*	SetCOM1	ECL
COM1 baud rate	*	SetCOM1	9,600
COM1 parity	*	SetCOM1	Off
COM1 handshake	*	SetCOM1	Xon/Xoff
COM2 mode	*	SetCOM2	ECL
COM2 baud rate	*	SetCOM2	9,600
COM2 parity	*	SetCOM2	Off
COM2 handshake	*	SetCOM2	Xon/Xoff
ECS LAN 2/4-wire connection	*	SetLanL, SetLanR	BL:2-wire, BR:2-wire
ECS LAN terminating resistor	*	SetLanL, SetLanR	BL:On, BR: On
ECS LAN baud rate	*	SetLanL, SetLanR	BL: 62K5, BR: 62K5
Background program: Daylight savings / standard time		H 31	'SUWI,IF,TIME-,+,time= . '
Formatting		FORMAT	Channels 1 64 in format 0
Group name		GROUP	ECS
Status relay coupling		STATCHECK	1 (coupled)

* These parameters are not changed when a master reset is executed.

7 Terminal Assignments

The SU1604 is equipped exclusively with plug-in connector terminals.

The following terminal types (color: gray with screw connector) are used and are manufactured by PHOENIX-CONTACT (PC):

- 3-pole, 5 mm grid (PC 1971947), used in U1614 power pack module
- 4-pole, 5 mm grid1878037), used in U1604 and U1624
- 5-pole, 3.5 mm grid (PC 1769087), used in U1604 (RS 232)
- 5-pole, 3.81 mm grid (for TBUS connection), right (PC 1719697) or left variant (PC 1719707)

7.1 U1614 Power Pack Module

24 V DC Output			
+24 V	0 V	0 V	Max. 5 W

STATUS REL			
NC	COM	NO	
	UA IN		90 264 V AC
L (+)		N (-)	120 370 V DC / 40 VA

24 V DC Output

- Up to 5 W at 24 V DC can be taken from this 3-pole terminal. Total output power of the U1614 power pack module is 20 W.
- +24 V and the two jumpered 0 V terminals are connected to internal 24 V DC supply power (TBUS +24 V terminal and GND = 0 V).

STATUS REL

- 3-pole terminal for the status relay, can be energized with 250 V AC, 5 A, relay contacts: AgNi 90/10
- In the case of STATUS OK, the relay is pulled out and COM is connected to NO. In the off state or in the case of STATUS ERROR, COM is connected to NC.

ua in

- 3-pole terminal for connecting auxiliary power UA

Reliable UA range:
 90 ... 264 V AC
 120 ... 370 V DC / 40 VA

10 -

	COM 2 (RS 485)				L	ON
TR+	TR-	Term-	Term+	A	В	
COM 1 (RS 232)						
TX	RX R	TS CTS	GND			
	LAN L					
10+	10-	l+	-			
	LAN R				OUT 1	S0 OUT 2

(a)

(b)

(a)

(b)

COM 2 (RS 485)

10 +

- 4-pole connector terminal for the RS 485 port (half-duplex).

1+

- A defined quiescent level is assured internally by resistors 1K/4K7/1K.

I-

– A 120 Ω terminating resistor is connected between TR+ (A) and TR– (B) by connecting Term- to Term+.

COM 1 (RS 232)

- 5-pole connector terminal (3.5 mm terminal grid) for the RS 232 port (full-duplex).
- A USB-COM adapter cable is available which can be directly connected to this terminal.

LAN L and LAN R

- 4-pole connector terminal for the LON network only A and B are used (polarity is irrelevant).
- The LON matching resistor is relay controlled (50 Ω / 100 Ω / off).

S0 Out 1+2 (semiconductor relays)

- Current-carrying capacity: max. 50 V DC, 200 mA, bipolar
- Relay ON \rightarrow (a) connected to (b) (typically 1 Ω , max. 10 Ω).

7.3 U1624-S0IN12

SO	IN 1	SO	IN 2	
(a)	(b)	(a)	(b)	
SO	IN 3	S0 IN 4		
(a)	(b)	(a)	(b)	
SO	IN 5	SO	IN 6	
(a)	(b)	(a)	(b)	

S0	IN 7	SO	IN 8	
(a)	(b)	(a)	(b)	
S0	IN 9	S0 IN 10		
(a)	(b)	(a)	(b)	
S0 I	N 11	S0 I	N 12	
(a)	(b)	(a)	(b)	

S0 IN 1 ... 12

- Six 4-pole connector terminals for two S0 inputs each.
- S0 input characteristics: Input voltage = max. 30 V, input resistance = 5.1 k Ω , bipolar, electrically isolated
- Due to the fact that the utilized optocouplers are bipolar, connection polarity is irrelevant.

7.4 TBUS Connection

The 5-pole TBUS is used to connected all SU1604 modules to each other. This connection is implemented by means of TBUS connectors which are included with each device and are snapped into the top-hat rail after plugging them together. The individual components are then latched onto the top-hat rail at the corresponding position. This procedure connects the devices to each other – no wiring is required.

In certain applications it my be necessary to:

- Use a special power pack instead of the U1614 power pack module
- Connect the TBUS from one top-hat rail to another
- Operate two or more U1604 basic modules with one U1614 power pack module

In these cases connection to the TBUS is accomplished with special 5-pole terminals (3.81 mm grid), which differ for right (PS 1719697) and left (PC 1719707) connection.

Left	Тор	Right
	TBUS STATUS	
	TBUS-	
	TBUS+	
	GND	
	+24V	

+24V, GND

- 24 V DC power supply to all TBUS devices

TBUS+, TBUS-

- RS 485 communication connection between U1604 and TBUS components

STATUS

- Control line for the status relay in the U1614 power pack module.
- Connected to 5 V by the U1604 basic module via pull-up resistor (STATUS OK) and to GND via N-FET in the case of STATUS ERROR. This makes it possible for all TBUS components to force the STATUS ERROR state.
- The following applies for the status relay in the U1614 power pack module: STATUS OK (relay picked up), if U_{TBUS-STATUS} \geq 2.7 V STATUS ERROR (relay dropped out), if U_{TBUS-STATUS} < 0.8 V or open

Connecting the protective earth conductor:

- The DIN top-hat rail must be securely connected to PE!
- The individual TBUS components are automatically connected to earth potential on the top-hat rail via a contact in the housing.
- TBUS GND does <u>not</u> have a low-impedance connection to PE, except for interference suppression with 1 nF/1 kV capacitors and protection against excessively high potential differences with a 275 V varistor in the U1614 power pack module between GND and PE.

Distributing a system to two separate top-hat rails:

U1614 Power	U1604 Basic module	U1624 Soin12	U1624 S0IN12		U1624 Soin12	U1624 S0IN12	U1624 Soin12	U1624 S0IN12
	TBUS	STATUS		\longleftrightarrow		TBUS	STATUS	
TBUS-		\longleftrightarrow	TBUS-					
TBUS+		\longleftrightarrow		TB	JS+			
GND			\longrightarrow		G	ND		
	+	24 V		\longrightarrow		+2	24 V	

One U1614 power pack module supplies two independent SU1604 systems:

U1614 Power	U1604 Basic1	U1624 S0IN12	U1624 Soin12	
	TBUS	STATUS		
	TE	BUS-		
	TBUS+			
	GND			
	+	24 V		

	U1604 Basic2	U1624 S0IN12	U1624 S0IN12	U1624 S0IN12
\rightarrow		TBUS STATUS		
	TBUS-			
	TBUS+			
\rightarrow		GND		
\rightarrow	+24 V			

Use of an external power pack

U1604 Basic1	U1624 Soin12	U1624 S0IN12	U1624 Soin12		
TBUS STATUS					
TBUS-				External power pac	
TBUS+				Output: 24 V DC	
GND			←	0 V	
+24 V			←	+24 V	

- Without the U1614 power pack module there's no 3-pole status relay. Nevertheless, one of the U1604 basic module's two S0-OUT semiconductor relays can be used as a status relay.
- See "Mapping the Status of the U1604 to Relay 1 or Relay 2" on page 51 in this "regard".
- The nominal input voltage range of the TBUS connections for +24 V and GND (UA_{TBUS}) is 24 V the connections are protected against polarity reversal.

The permissible voltage range is: $9 \text{ V} \leq \text{UA}_{\text{TBUS}} \leq 30 \text{ V}.$

Attention!

If 24 V DC auxiliary power is supplied externally, the U1614 power pack module may not be used!

8 Programming

8.1 General information

ECL – Energy Control Language

The flexibility of the ECS is based on the programmability of the individual summators using the ECL programming language (energy control language), which was specially developed for the ECS. Refer to the operating instructions for the ECL interpreter and the commands list for further information concerning this high-level language which is similar to FORTH but, like BASIC, is easy to learn. Thanks to this programmability, the following additional system characteristics are made available:

Virtual Channels

Even complex formulas for the creation of virtual channels can be clearly and concisely formulated as background programs. There's no predetermined schema which inhibits flexibility.

Programming the Relays

Relay switching can depend on numerous conditions. With ECL, any desired conditions can be formulated, even cross-summator conditions. The conditions are evaluated continuously as a background program. Simple energy management, for example, can be a special type of relay output programming ...

Simple Energy Management

Example: If a consumer's mean power exceeds a given value, the consumer is shut down by switching one of the 2 relays. Whether or not this shut down is at all desirable can be ascertained by checking system time (e.g. only at night), by polling a binary input (e.g. only switch when logical one is applied to input 10) or by evaluating the power values of other consumers.

Tariff Changeovers

Time comparison functions in background programs make it possible to respond to special requirements for tariff changeovers.

Flexible Adaptation to Database-Specific Transmission Formats

Continuously recurring queries of datasets can be saved as a normal P program. Entirely ASCII-oriented database formats can be compiled in a program of this sort. Data transmission is started in accordance with the desired format after invoking this program.

Background Programs H0 ... H31

32 background programs are available, namely H0 ... H31. Each program can take on up to 127 characters. The background programs are executed in the background, one after the other. Thanks to the operating system's multitasking structure, the background programs have absolutely no effect on the normal operating sequence.

Programs P0 ... P31, Q0 ... Q31

64 programs, namely P0 ... P31 and Q0 ... Q31, receive continuously recurring command inputs which can then be processed by simply invoking the corresponding program. Nesting of programs is possible, and a normal P program can be executed as a subprogram from a background program.

Program Names

Names can be assigned to P programs. P programs can be addressed system-wide with their names.

8.2 Parameters Configuration and Data Visualization at a PC

The easiest way to communicate with a summator from a PC is via terminal emulation, e.g. with the help of HyperTerminal. However, adequate knowledge of the commands is absolutely essential.

ECSwin provides a much more convenient method:

Program features:

ECSwin is used primarily for configuring parameters at U1600, U1601, U1602, U1603, U1604 and U1615 summators in an ECS LAN. Beyond this, reading in and visualizing energy consumption data in the form of measured value tables and graphics (online displays) is supported as well. The 32-bit program (as of V3.4.x) runs under MS Windows Vista and 7 (32 and 64-bit), as well as 8 and 10. Connection to the U16xx is possible via TCP/IP or RS 232.

The following functions are provided by the software:

- A dialog box for logging on and configuring access authority
- A dialog box for setting time in the ECS LAN
- A dialog box for configuring summator parameters
- A dialog box for configuring channel parameters
- A dialog box for setting meter readings
- A dialog box for configuring relay parameters
- Transfer user created commands to the summator
- A dialog box for generating virtual channels
- Control panel display (including device display, keys and LEDs) for U1600, U1601 and U1604
- Ascertainment and graphic representation of ECS LAN network topology
- Querying and display (as table or characteristic curve) of intervallic, daily, monthly and annual energy and power data which have been stored to memory at the summator.
- Querying and graphic display of currently measured values in data logger format
- Data transmission via modem (maintenance of a dial-up list)
- Terminal emulation

8.3 ECL Extensions and Notes on Compatibility

This section includes extensions to the ECL interpreter language as well as notes concerning compatibility.

Addressing Up to 255 Devices in the ECS LAN System

ECL permits direct addressing of up to 255 devices in the ECS LAN system by placing the device ID (A:, A1: ... A9:, B:, B1 ... B9:, ... Z:, Z1: ... Z4:) in front of the command. Example for querying the firmware version of devices A1: and C7:

A1 : VER, C7 : VER

The so-called "local" device, which is connected to the PC directly via the RS 232 or TCP/IP port, can be directly addressed with special ID AA:, without having to know the exact ID.

The default context is normally set to the local device, so that use of special ID AA: is only necessary in exceptional cases. This is usually made apparent in the terminal programs by means of a prompt at the beginning of the line in the form of "<A>" for device A:.

Examples (do not enter prompt <A> – it's generated by the terminal program):

<a> VER	\rightarrow	read out version information from device A:
<a> ALL, VER	\rightarrow	read out version information from all available devices
<a> C1: VER, EGES 1	\rightarrow	VER read-out from device C1: and read-out of ETOT 1 from device A:
		(change of device context one-time only for C1:)
<a> C1: , VER, EGES 1	\rightarrow	VER read-out and read-out of ETOT 1 from device C1:
		(C1: becomes line context - valid through the end of the line)
<a> C1: , VER, AA : ETOT 1	\rightarrow	VER read-out from device C1: and ETOT 1 from device A
		(although C1. becomes line context, special ID AA: applies to ETOT \rightarrow A:)

Differentiation Amongst Local and Remote Devices

In the case of varying firmware and/or device types within the ECS LAN system, it's important to differentiate amongst "local" and so-called "remote" devices and summators. Which devices are responsible for the transmission of data between these via the ECS-LAN is usually irrelevant, although of course data throughput can differ significantly depending on device type.

The ECL command interpreter always runs at the local summator, and must thus be capable of understanding all of the commands used in the command line. If it doesn't know one of the commands, this results in a SYNTAX ERROR.

- For example, in a system comprised of U1600, U1601/2/2/3 and U1604 summators, all of the commands of a "remote" U1600 summator can be processed by a U1604 summator which functions as the "local" summator (downward compatibility).
- But this doesn't work the other way around when the U1600 is the "local" summator and the U1604 is the "remote" summator. All of the commands from the U1604 summator which are unknown to the U1600 summator result in errors. Nevertheless, all of the commands known to the U1600 can be executed on/with a remote U1604 (limited upward compatibility).

Note: There are also command groups such as SYS, LON, REC etc. which fundamentally have to be known by the local summator, although the exact command (e.g. SY-SIP) is first interpreted by the remote summator.

The terms local device and remote device have been explained here in detail because they have to be used again and again in the following sections in order to illustrate complicated internal relationships.

8.4 INDEX Command Bug for U1601/2/3 with Use of UTC

The INDEX command is used for a time search in order to find a certain entry in the interval measurement data list. The bug in U1601/2/3 firmware as of V2.48 described below was detected and eliminated in June 2017.

Insofar as all summators within the ECS LAN system work exclusively with local time (in which case the following applies: UTCTZ = 0 and UTCDST = 0), the INDEX command functions flawlessly.

But as soon as UTC time is used system-wide (for example Germany: UTCTZ = 1, UTCDST = 1), the INDEX commend doesn't find the right entry if a local time is searched for with the time search and the addressed summator is a U1601/2/3 with firmware (FW) older than June 2017. In this case, the result of INDEX <time specification> erroneously corresponds precisely to the results of INDEX° <time specification>.

If a UTC is searched for (with the "°" extension), the entire system functions flawlessly. This also applies to U1600 summators, which have to be set to local time for systemwide UTC time processing because they don't offer any internal UTC time processing.

	System Time	U1604	U1601/2/3 FW as of V2.57	U1601/2/3 FW up to V2.56	U1600
INDEX with local time search	UTC	~	~	ERROR!	Not possible
INDEX° with UTC time search	UTC	~	v	v	v ⁹
INDEX with local time search ¹⁰	Local	~	v	v	v

Notes

– System time UTC means that all real-time clocks (RTCs) are set to UTC time and all (local) time specifications are converted in accordance with the time zone (UTCTZ) and the daylight savings time setting (UTCDST). Internal timestamps are always in UTC and are thus strictly monotonic increasing, regardless of any daylight savings / standard time changeover.

The workaround for the above mentioned error can be used insofar as the "local" summator is a U1601/2/3 as of firmware V2.48 or a U1604: date//- <tt.mm.jj_local> <hh:mm:ss_local>,loc2utc .,INDEX° .,eint// <kan> . <number> Local search time is thus converted to UTC and this UTC time is transferred to the INDEX° command via stack reference ".". The above table makes it apparent that the INDEX° command with UTC time search works in a trouble-free fashion. If the firmware of the U1601/2/3 summator is older than V2.48, no UTC processing is possible. In this case it's only possible to proceed as with U1600 summators and to set local time to UTC time.

⁹ The search must be conducted by a "remote" device (U1601/2/3, U1604) – not by a U1600 device because this has to run with local time = UTC time.

¹⁰ This also applies when UTC time processing is not active, but all summators within the ECS LAN are nevertheless running on UTC time instead of local time (meaning: continuously monotonic increasing time). The search time specification must then be specified in displaced local time – the "o" extension doesn't play any role at all.

9 Technical Data

Subject to change without notice!

Binary Inputs

U1624 S0 – Inputs, 12-Channel S0IN12	
Input quantity	Direct current, bipolar (square-wave pulses, S0-compatible)
Design	Electrically isolated
Input voltage	Max. 30 V
Input resistance	5.1 kΩ

Auxiliary Power Supply

U1614 – Power Pack Module with Broad Range AC/DC Input	
Nominal range of use, AC	90 V 264 V
Frequency	47 440 Hz
Nominal range of use, DC	120 V 370 V
Efficiency	83%
DC output voltage accuracy	Max. 24 V, 5 W ±2%
Total DC output power	Max. 24 V, 20 W (incl. DC output)
Power consumption U1604 (basic module) U1624 (12 ea. S0 input)	Max. 40 VA 5 W 1 W
Fuse	T1.6 A / 250 V (20 mm)
Status relay	250V AC, 5A, 3-pole, AgNi 90/10

Memory

FLASH – MRAM – TRTC	
Flash memory Calculated useful life Data preservation	128 MB Approx. 20 years (all 4 recorders save 64 channels per second) > 20 Years
MRAM Data preservation	4 MB > 20 years (data preservation independent of RTC backup battery)
RTC real-time clock Follow-up time Accuracy Backup battery for RTC Service life	> 10 years 5 \pm 5 ppm (0 +10 ppm) Lithium battery, 3 V ½ AA installed to PCB > 10 years, battery replacement is typically unnecessary

Outputs

Relay Outputs	
2 S0 semiconductor relays (U1604)	Max. 50 V DC, 200 mA, bipolar
Status relay (U11614)	250 V AC, 5 A, 3-pole, AgNi 90/10

Mechanical Design

Modular Housing Concept	
Width U1614 power pack module U1604 basic module U1624 SOIN12	35 mm 45 mm 22.5 mm
Height	100 mm
Depth U1614 power pack module U1604 basic module U1624 SOIN12	114 mm 114 mm 107 mm
Mounting	To top-hat rail per EN 50022 / 35 mm

Ambient Conditions

Operating temperature range	-10 +55 °C
Storage temperature range	-25 +70 °C
Relative humidity	< 75% annual average
Elevation	To 2000 m
Deployment	Indoors
Mechanical classification	M1
Electromagnetic classification	E2

Electromagnetic Compatibility (EMC)

Interference emission EN 61326-1:2013 class B Interference immunity EN 61326-1:2013

Note

The included ferrite must be snapped onto a LAN cable!

Applicable Regulations and Standards

IEC 61010-1 DIN EN 61010-1 VDE 0411-1	Safety requirements for electrical equipment for measurement, control and laboratory use – Part 1: General requirements
DIN EN 61326-1 VDE 0843-20-1	Electrical equipment for measurement, control and laboratory use –EMC requirements – Part 1: General requirements

10 LON Bus System Structure

The most commonly used transmission medium for industrial and building management applications is twisted pair copper cable, which is used together with the electrically isolated FTT-10A transceiver. Both of the conductors can be connected to either pole, and installation is thus reverse polarity protected.

Maximum transmission distances are influenced by the electrical characteristics of the cable, and the network topology. Utilized cables should comply with the stipulated specifications in order to prevent interference during communication. Due to the possibility of reflections, only one cable type may be used in any given bus segment.

Network Topologies

If a bus structure is used, the components are connected in parallel, one after the other. A bus terminating resistor must be used at each end. Branch lines may not exceed a length of 3 meters. Only one bus terminator is required with free topologies, but transmission distances are limited in this case.

If repeaters are used, the bus signal can be boosted thus increasing maximum possible transmission distance. Due to response characteristics, only one passive repeater may be included in any given bus segment. The transition to other physical transmission media, and/or targeted forwarding of data packets to individual bus segments, is accomplished by means of routers.

The following recommendation is based upon experience gained by GMC-I Messtechnik GmbH during installation and start-up of LON systems. The environment within which the cable is laid has a decisive influence on correct cable selection, and must therefore be taken into consideration during the planning stage. All generally applicable directives for laying control and telecommunications cables must be adhered to during installation.

10.1 Maximum Cable Lengths

Cable Type / Designation	Bus Topology (bus terminator at both ends)	Free Topology (bus terminator at one end)
JY (ST) Y 2 ea. 2 x 0.8 mm	900 m	500 m max. 320 m from device to device
UNITRONIC bus cable	900 m	500 m max. 320 m from device to device
Level IV, 22AWG	1400 m	500 m max. 400 m from device to device
Belden 8471	2700 m	500 m max. 400 m from device to device
Belden 85102	2700 m	500 m

Specified values apply to total cable length and are only valid for the FTT-10A transceiver.

10.2 Cable Type

Inexpensive wiring is possible for applications in environments with minimal interference using the following cable type: JY (ST) Y 2 ea. 2 x 0.8 mm with twisted wire pairs. The above specified dimension of 0.8 mm refers to the diameter of the wire, which results in a wire cross-section of 0.5 square mm.

In most cases no shielding is required. It may be possible to eliminate communications problems occurring in environments with excessive interference by connecting the shield at one end. If cables are used which contain several wire pairs, it may be advantageous if the individual pairs are shielded. Special LON bus cable can be used for highly demanding requirements.

10.3 Bus Termination

Additional bus terminators are required for bus topologies, and where repeaters are utilized. These can be purchased as auxiliary LON component U1664 in top-hat rail mount housing. Each unit includes a one-ended and a two-ended bus terminator.

11 Connecting LON Bus Compatible Devices

Up to 64 nodes can be connected to a U1601 ... 4 summator via the LON network. The summator is capable of interacting with the following LON compatible devices:

Multifunctional power meter
Programmable multi-transducer
Electric meters
8-channel (S0) meter polling module
6-channel analog input module
6-channel relay output module
OCL210
A2000, A210, A230
DME400
U1681, U1687, U1689, U128x W1, U138x W1, U228x W1, U238x W1

11.1 Network Interface

So-called binding is generally required in order to enable communication amongst LON devices. This means that network variable outputs are connected (bound) to network variables with the help of a tool.

Binding is not required for the U1604, which significantly simplifies installation. The nodes are addressed via the neuron ID (LON ID). The neuron ID is a twelve digit number which is printed on the device, and which can be queried via the display at the A2000. The channel function is configured with the mode command (CMODE). The desired values are selected with the sub-channel command (LonCHANNEL). Selected values and any error messages generated by the LON devices are queried cyclically (polling).

11.2 Functions

Acquiring Energy and Power Values (mode: LON, CMODE = 4 LON)

The U1604 continuously acquires meter readings and power values from the LON devices. A delta value is generated based on the current meter reading and the previous value, which is added to Etot and Eint. The current meter reading is stored to non-volatile memory for use in generating the next delta value. Only positive delta values are taken into consideration.

Special feature for U1660 and U1661: These devices are not equipped with a non-volatile memory. If supply power to any given LON data logger is interrupted, it starts counting again from zero. Meter readings acquired after this point in time are smaller than the recorded energy value, and thus no delta value is generated. In order to assure that this energy is not ignored, the first value after a power failure is saved as the previous value, and is used as a basis for generating the next delta value.

Acquiring Analog Values (mode: LON-ANA, CMODE = 5 LonA)

LON device network variables can also be acquired as analog values. This operating mode is especially useful for the innumerable values read out by the A2000 and the DME400. Values are not integrated in this case.

Acquiring Analog Values with Integration (mode: LON-PE, CMODE = 6 L-PE)

If the analog value represents power, energy is calculated by means of integration.

Binary Inputs and Outputs

(mode: LON-INP, CMODE = 7 Lonl or LON-REL, CMODE = 8 LonR) Binary inputs can be queried with the U1660 meter polling module, and the OCL210 relay output module is capable of switching relays.

11.3 Device Descriptions

11.3.1 A2000 Multifunctional Power Meter

Energy and Power Function

Settings:

CMODE k = 4 LON. Desired energy is selected by means of the network variable number under LonCHANNEL. LonCHANNEL k = Nv#. The displayed unit of measure is the power unit of measure. Only the energy network variable is entered, and corresponding power is read out automatically.

Nv#	Name	Description	Nv#	Name	Description
51	NvoWHTotExpLT	Active energy export LT	27	nvoWatTot	Active power in the network
52	NvoWHTotImpLT	Active energy import LT	27	nvoWatTot	Active power in the network
53	NvoWHTotExpHT	Active energy export HT	27	nvoWatTot	Active power in the network
54	NvoWHTotImpHT	Active energy import HT	27	nvoWatTot	Active power in the network
58	NvoVarHTotExpLT	Reactive energy export LT	35	nvoVarTot	Reactive power in the network
59	NvoVarHTotImpLT	Reactive energy import LT	35	nvoVarTot	Reactive power in the network
60	NvoVarHTotExpHT	Reactive energy export HT	35	nvoVarTot	Reactive power in the network
61	NvoVarHTotImpHT	Reactive energy import HT	35	nvoVarTot	Reactive power in the network

Energy Values and Corresponding Power

Only the LTHT setting is supported with the A2000 (default status).

Analog Value Function

All other network variables can be read in as analog values.

Settings:

 \overrightarrow{CMODE} k = 5 LonA. The desired value is selected by means of the network variable number under LonCHANNEL.

LonCHANNEL k = Nv#. The displayed unit of measure is the power unit of measure.

11.3.2 DME400 Programmable Multi-Transducer

LON Settings:	Domain 1:	Length 1, ID 00
	Node state:	Configured, online

Energy and Power Function

Settings:

CMODE k = 4 LON. Desired energy is selected by means of the network variable number under LonCHANNEL. LonCHANNEL k = Nv#. The displayed unit of measure is the power unit of measure. Only the energy network variable is entered, and corresponding power is read out automatically.

Energy Values and Corresponding Power

Nv#	Name	Description	Nv#	Name	Description
51	Nvo_EnergyA	Active energy export	27	nvo_TrueSY_Power	Active power in the network
52	Nvo_EnergyB	Active energy import	27	nvo_TrueSY_Power	Active power in the network
53	Nvo_EnergyC	Inductive reactive energy	35	nvo_ReactSY_Pwr	Reactive power in the network
54	Nvo_EnergyD	Capacitive reactive energy	35	nvo_ReactSY_Pwr	Reactive power in the network

Only this setting is supported (must be configured).

Analog Value Function

All other network variables can be read in as analog values. Settings:

CMODE k = 5 LonA. The desired value is selected by means of the network variable number under LonCHANNEL. LonCHANNEL k = Nv#. The displayed unit of measure is the power unit of measure.

11.3.3 U1681, U1687 and U1689 Electric Meters

Settings:

CMODE k = 4 LON. Desired energy is selected via LonCHANNEL.

LonCHANNEL k = 1 reads out active energy import, LonCHANNEL k = 2 reads out active energy export. Corresponding power is read out automatically.

Energy Values and Corresponding Power

Nv#	Name	Description	Nv#	Name	Description
8	Nvo01EnergyInL	Active energy import	22	nvo02Power	Active power in the network
10	Nvo01EnergyOutL	Active energy export	22	nvo02Power	Active power in the network

See also section 11.3.7.

11.3.4 U1660 8-Channel (S0) Meter Polling Module

Energy Meter Function

Settings:

Binary Input Function

A U1660 meter polling module can be assigned to each of the channels of the U1604.

Settings:

CMODE k = 7 LonI. LonINP reads out the status of all 8 S0 inputs of the U1660. The energy meter function of the U1660 remains unaffected. Each input corresponds to one bit:

```
Input 8 7 6 5 4 3 2 1
Bit 8 7 6 5 4 3 2 1
Example: LonINP 3 = 3 means U1660 at channel 3, inputs 1 and 2 on, all others off.
```

11.3.5 U1661 6-Channel Analog Input Module

Energy Meter / Flow Meter Function

Settings:

CMODE k = 4 LON. The desired input is selected via LonCHANNEL. LonKANAL k = 1...6 reads our energy in channels 1 ... 6. Corresponding power is calculated by the U1661 and read out automatically. The <code>Pfactor,Lon-FACTOR</code> and <code>LonOFFSET</code> parameters are transmitted to the device during installation to this end.

Analog Value Function (instantaneous power)

Settings:

CMODE k = 5 LonA. The desired analog value is selected via LonCHANNEL. LonCHANNEL = 1...6 reads out analog values from channels 1 through 6. The Pfactor, LonFACTOR and LonOFFSET parameters are transmitted to the device during installation.

Power Function via LON, Energy Calculation in the U1604

Settings:

 $\dot{C}MODE k = 6 L-PE$. Desired power is selected via LonCHANNEL.

 $LonCHANNEL = 1 \dots 6$ reads out analog power from channels 1 through 6. Corresponding power is calculated by the U1604. The Pfactor, LonFACTOR and LonOFFSET parameters are transmitted to the device during installation.

11.3.6 OCL210 6-Channel Relay Output Module

An OCL210 relay module with 6 relays can be assigned to each channel of the U1604.

Settings:

CMODE k = 8 LonR. Each relay corresponds to one bit:Relay6 5 4 3 2 1Bit8 7 6 5 4 3 2 1Example: LonREL 2 = 5 switches relays 1 and 3 on at channel 2 in the OCL210, all other relays are off.

11.3.7 Multifunctional Energy Meters U128x W1, U138x W1, and A210/A230 (as of version 4.0) with EMMOD205 (as of version 1.1)

Energy and Power Function

Settings: CMODE k = 4 LON. Desired energy is selected via LonCHANNEL.

LonCHAN- NEL	Description	
1	Active energy, active power and error	
2	Active secondary energy, active secondary power and error	U128x/U138x only
3	Reactive energy, reactive power and error	

Analog Value Function

Settings:

CMODE k = 5 LonA. The desired value is selected via LonCHANNEL. The displayed unit of measure is the power unit of measure.

LonCHANNEL	Description	
7	Current in phase L1	
9	Current in phase L2	
8	Current in phase L3	
10	Phase current mean value	
11	Total active power, all 3 phases	
12	Active power in phase L1	
13	Active power in phase L2	
14	Active power in phase L3	
15	Total reactive power, all 3 phases	
16	Overall power factor	
17	Power factor in phase L1	
18	Power factor in phase L2	
19	Power factor in phase L3	
20	Phase-to-phase voltage, L1 and L2	
21	Phase-to-phase voltage, L2 and L3	
22	Phase-to-phase voltage, L3 and L1	
23	Phase-to-neutral voltage, L1 and N	
24	Phase-to-neutral voltage, L2 and N	
25	Phase-to-neutral voltage, L3 and N	
27	Phase voltage mean value	
26	Fundamental voltage frequency	
6	Operating hours since the last time operating voltage was switched on	U128x/U138x only
33	Operating hours exceeded with the meter's start-up threshold	U128x/U138x only

Function for Mean Value Generation of Analog Values

CMODE k = 6 LON-PE.

The instantaneous analog value (Pmom) is displayed in this mode, as with LonA. Beyond this, a **mean value** is generated at the summator over the selected interval duration (e.g. 15 minutes) and saved to interval memory (Pint). The desired value is selected via LonCHANNEL.

LonTYPE

Device type and Q feature are display as LonTYPE after installation, for example U1389 Q1.
11.3.8 Multifunctional Energy Meters U228x W1, U238x W1

In the case of the new energy meters included in the EM228x and EM238x series, the primary values are transmitted via LON. For features Q1 and Q9, this means that the secondary value is multiplied by the transformer ratio (CT x VT).

In the case of Q1, where CT and VT can be freely configured within specified limits, this means that the energy value is also changed when the product of CT x VT changes. For this reason, changes of this sort should only be made during idling without load.

Energy and Power Function

Settings:

CMODE k = 4 LON. Desired energy is selected via LonCHANNEL.

LON Chan.	Network Variable	Data Type	Description	OBIS
8	nvokWhPosT1Pri	UNVT_energy_U160x	Primary active energy import, all phases, tariff no. 1	1.8.1
9	nvokWhPosT2Pri	UNVT_energy_U160x	Primary active energy import, all phases, tariff no. 2	1.8.2
10	nvokWhPosT3Pri	UNVT_energy_U160x	Primary active energy import, all phases, tariff no. 3	1.8.3
11	nvokWhPosT4Pri	UNVT_energy_U160x	Primary active energy import, all phases, tariff no. 4	1.8.4
12	nvokWhPosT5Pri	UNVT_energy_U160x	Primary active energy import, all phases, tariff no. 5	1.8.5
13	nvokWhPosT6Pri	UNVT_energy_U160x	Primary active energy import, all phases, tariff no. 6	1.8.6
14	nvokWhPosT7Pri	UNVT_energy_U160x	Primary active energy import, all phases, tariff no. 7	1.8.7
15	nvokWhPosT8Pri	UNVT_energy_U160x	Primary active energy import, all phases, tariff no. 8	1.8.8
16	nvokWhNegT1Pri	UNVT_energy_U160x	Primary active energy supply, all phases, tariff no. 1	2.8.1
17	nvokWhNegT2Pri	UNVT_energy_U160x	Primary active energy supply, all phases, tariff no. 2	2.8.2
18	nvokWhNegT3Pri	UNVT_energy_U160x	Primary active energy supply, all phases, tariff no. 3	2.8.3
19	nvokWhNegT4Pri	UNVT_energy_U160x	Primary active energy supply, all phases, tariff no. 4	2.8.4
20	nvokWhNegT5Pri	UNVT_energy_U160x	Primary active energy supply, all phases, tariff no. 5	2.8.5
21	nvokWhNegT6Pri	UNVT_energy_U160x	Primary active energy supply, all phases, tariff no. 6	2.8.6
22	nvokWhNegT7Pri	UNVT_energy_U160x	Primary active energy supply, all phases, tariff no. 7	2.8.7
23	nvokWhNegT8Pri	UNVT_energy_U160x	Primary active energy supply, all phases, tariff no. 8	2.8.8
24	nvokVArhPosT1Pri	UNVT_energy_U160x	Primary reactive energy import, all phases, tariff no. 1	3.8.1
25	nvokVArhPosT2Pri	UNVT_energy_U160x	Primary reactive energy import, all phases, tariff no. 2	3.8.2
26	nvokVArhPosT3Pri	UNVT_energy_U160x	Primary reactive energy import, all phases, tariff no. 3	3.8.3
27	nvokVArhPosT4Pri	UNVT_energy_U160x	Primary reactive energy import, all phases, tariff no. 4	3.8.4
28	nvokVArhPosT5Pri	UNVT_energy_U160x	Primary reactive energy import, all phases, tariff no. 5	3.8.5
29	nvokVArhPosT6Pri	UNVT_energy_U160x	Primary reactive energy import, all phases, tariff no. 6	3.8.6
30	nvokVArhPosT7Pri	UNVT_energy_U160x	Primary reactive energy import, all phases, tariff no. 7	3.8.7
31	nvokVArhPosT8Pri	UNVT_energy_U160x	Primary reactive energy import, all phases, tariff no. 8	3.8.8
32	nvokVArhNegT1Pri	UNVT_energy_U160x	Primary reactive energy supply, all phases, tariff no. 1	4.8.1
33	nvokVArhNegT2Pri	UNVT_energy_U160x	Primary reactive energy supply, all phases, tariff no. 2	4.8.2
34	nvokVArhNegT3Pri	UNVT_energy_U160x	Primary reactive energy supply, all phases, tariff no. 3	4.8.3
35	nvokVArhNegT4Pri	UNVT_energy_U160x	Primary reactive energy supply, all phases, tariff no. 4	4.8.4
36	nvokVArhNegT5Pri	UNVT_energy_U160x	Primary reactive energy supply, all phases, tariff no. 5	4.8.5
37	nvokVArhNegT6Pri	UNVT_energy_U160x	Primary reactive energy supply, all phases, tariff no. 6	4.8.6
38	nvokVArhNegT7Pri	UNVT_energy_U160x	Primary reactive energy supply, all phases, tariff no. 7	4.8.7
39	nvokVArhNegT8Pri	UNVT_energy_U160x	Primary reactive energy supply, all phases, tariff no. 8	4.8.8
40	nvokWhPosPri	UNVT_energy_U160x	Primary active energy import, all tariffs	1.8.0
41	nvokWhNegPri	UNVT_energy_U160x	Primary active energy supply, all tariffs	2.8.0
42	nvokVArhPosPri	UNVT_energy_U160x	Primary reactive energy import, all tariffs	3.8.0
43	nvokVArhNegPri	UNVT_energy_U160x	Primary reactive energy supply, all tariffs	4.8.0

Analog Value Function

Settings:

CMODE k = 5 LonA. The desired value is selected via LonCHANNEL. The displayed unit of measure is the power unit of measure.

LON Chan.	Network Variable	Data Type	Description
Phase	voltages		
44	nvoU12	SNVT_volt_f	Phase-to-phase voltage, L1 and L2
45	nvoU23	SNVT_volt_f	Phase-to-phase voltage, L2 and L3
46	nvoU31	SNVT_volt_f	Phase-to-phase voltage, L3 and L1
47	nvoU1N	SNVT_volt_f	Phase-to-neutral voltage, L1 and N
48	nvoU2N	SNVT_volt_f	Phase-to-neutral voltage, L2 and N
49	nvoU3N	SNVT_volt_f	Phase-to-neutral voltage, L3 and N
50	nvoUAvg	SNVT_volt_f	Mean value of line-to-line voltage
51	nvoFreq	SNVT_freq_hz	Fundamental voltage frequency
52	nvoThdU1	SNVT_lev_percent	THD voltage L1
53	nvoThdU2	SNVT_lev_percent	THD voltage L2
54	nvoThdU3	SNVT_lev_percent	THD voltage L3
Phase	current		
55	nvol1	SNVT_amp_f	Current in phase L1
56	nvol2	SNVT_amp_f	Current in phase L2
57	nvol3	SNVT_amp_f	Current in phase L3
58	nvolAvg	SNVT_amp_f	Phase current mean value
59	nvolN	SNVT_amp_f	Calculated neutral conductor current
60	nvoThdl1	SNVT_lev_percent	THD current I1
61	nvoThdl2	SNVT_lev_percent	THD current I2
62	nvoThdl3	SNVT_lev_percent	THD current I3

Further information can be found in the interface description for the LON interface (3-349-908-03).

11.4 Reinstalling a LON Device

The following actions are executed when a LON device is installed:

- Find a bus user based upon the entered neuron ID.
- Read out device type.
- Assign net variables to be read in to a summator channel. Each multi-channel device has only one neuron ID. The channel is selected with the sub-channel parameter.
- For U1660 and U1661: Transmit parameters to the device.
- For energy metering (MODE = LON): Start delta value generation, i.e. the first value is saved as previous value energyOld. Delta value = energy – energyOld. Energy values recorded by the LON device previously are not taken into consideration.

Reinstallation of a LON channel is initialized with the LonNEW c = 1 command, or by changing the neuron ID. Reinstallation of all LON channels is initialized with the command:

LonNEW ** = 1 or via SETUP / LON / REINSTALLATION

11.4.1 Preparing the Summator

Set bus termination at the control panel: SETUP / LON / TERMINATION = 50 Ohm (SetLON = RA50) LON network termination is set via TERMINATION:

TERMINATION = open in case of external termination

TERMINATION = 50 Ohm with free topology

TERMINATION = 100 Ohm with bus topology using two terminators (branch lines < 3 m).

11.4.2 Preparing the LON Device

Connect the LON terminal at the LON device to the summator. Connect operating power to the LON device.

11.4.3 Configuration via the Summator Control Panel

- Configure the summator channel: LON activity = STOPPED
 Set the channel mode: MODE = LON (or LON-ANA, LON-PE, LON-INP, LON-REL)
 Enter the sub-channel.
 Enter the neuron ID of the LON device.
 Enter and/or check all other channel parameters.
 LON activity = RUN
- If the summator finds the device, the device type is displayed in the left column. U1661.6 means a U1661 device with 6 channels.
 Parameters are transmitted to the device and read back in the case of the U1660 and the U1661.
 U1660: Check METER CONSTANT.

U1661: Check LONFACTOR, LONOFFSET and P-FACTOR.

• Check LON type. If the type is displayed correctly: Check for channel errors. Installation is now complete.

If the connected device is not displayed at LON type: Check the LON ID. If LON type is ????????: Check the LON ID, and check LON wiring. Start reinstallation:

by changing the neuron ID. For example, set the first digit to 1, and then back to 0. Reinstallation of all channels can be initialized via SETUP / LON / REINSTALLATion. Repeat this procedure until the device type is recognized.

11.5 Configuration at a PC with ECSwin Software

- Log in to the desired summator at the terminal.
- Open the "Configure / Channel Parameters" menu item.
- Wait until all data have been read in.
- Enter all parameters to the "Meter Inputs" index register.
 MConst is transmitted to the device for the U1660 (double check).
 P-FACTOR is transmitted to the device for the U1661 (double check).
- Enter all parameters to the "LON Parameters" index register.
 The LON factor and LON offset parameters are transmitted to the device for the U1661, (double check).
- Transmit data to the summator.
- Data are read back automatically and the LONtype column is filled in (this column has read-only access). Due to the fact that type recognition via the LON bus takes several seconds, "????????" is sometimes displayed as a type designation. The channel parameters window should then be exited and reopened.
- Check LON type.

If the type is displayed correctly: Check for channel errors. Installation is now complete.

If the connected device is not displayed at LON type: Check the LON ID. If LON type is ???????? Check the LON ID, and check LON wiring. Start reinstallation:

For one channel with the following command: LonRE c = 1 in terminal window For all channels with the following command: LonRE ^{**} = 1 Repeat this procedure until the device type is recognized.

11.6 Replacing a LON Device

- Deactivate the affected summator channel (control panel: MODE = OFF; ECSwin: CMode = 0).
 Deactivate all affected channels for multi-channel devices.
- Replace the LON device.
- Enter a new LON ID.
- Reactivate all deactivated channels (control panel: MODE = LON; ECSwin: CMode = 4).
- Check LON type. If the type is displayed correctly: Check for channel errors. Replacement is now complete.

If the connected device is not displayed at LON type: Check the LON ID. If LON type is ???????: Check the LON ID, and check LON wiring. Parameters are transmitted to the device in the case of the U1660 and the U1661. Check for parameters configuring errors. Control panel: CHANNEL ERROR menu, terminal: ErrChan c If a parameters configuring error is detected: For U1660: Check METER CONSTANT For U1661: Check LONFACTOR, LONOFFSET and P-FACTOR.

Start reinstallation:

At the control panel: By changing the neuron ID. For example, set the first digit to 1. and then back to 0.

Reinstallation of all channels can be initialized via SETUP / LON / REINSTALLATion. In the terminal window: For one channel with the following command LonRE c = 1For all channels with the following command LonRE ** = 1

Repeat this procedure until the device type is recognized.

11.7 Additional LON Parameters

- Waiting time for responses: SETUP / LON / TIMING-CODE = 9 (LONSTATTIMing = 9) Waiting time is set for a response with TIMING CODE. TIMING-CODE is an encoded value for the duration of time allowed between a query and a response. The default setting (9) should only be changed by experts!
- Time between two queries:

A delay can be selected here in order to reduce data traffic in the bus.

SETUP / LON / POLL-DELAY = 0 (LonPOLLDELay = 0) POLL DELAY is time between queries from 2 channels in milliseconds.

Example: POLL-DELAY = 300, 60 channels: all channels are queried in 18 seconds.

Default: POLL-DELAY = 0.60 channels: all channels are queried in 5 seconds.

11.8 Channel Errors

The following channel errors may occur depending upon the type of installed device:

Bit	U1604 Description	A2000	DME400	U1660	U1661	U1681	U1687	U1689	0CL210	U1281 U1381	U1289 U1387 U1389	EM228x EM238x
1	Communications error	~	~	~	~	~	~	~	~	~	~	~
2	Unknown device									~	~	~
3	Self-test error	~				~	~	~		~	~	~
4	Calibration error									V	~	~
6	Offline	~	~	~	~	~	~	~	~	~	~	~
9	Broken sensor				✓ ¹⁾					~	~	~
10	Phase failure						~	~		V	~	~
11	Phase sequence error	~						~			~	~
12	Overflow	~			~	~	~	~		~	~	~
25	Parameter configuration error			~	~							

only for U1661 B2 4 - 20 mA

TIMING CODE	Waiting time in ms
LONSTATTIMing	
0	16
1	24
2	32
3	48
4	64
5	96
6	128
7	192
8	256
9	384
10	512
11	768
12	1.024
13	1.536
14	2.048
15	3.072

12 Index

Numerics

2-Wire Technology	
4-Wire Technology	13

A

ANA Factor, ANA Offset	39
ANA Fixed Point	39
Analog Output Test	34
Analog Outputs A1, A2	11
ASCII Database	18,60

В

-	
Background Programs	60
Battery	
Error Status	12
Maintenance	80
Binary Meter Inputs	11
Binding	68
Bootstrap Loader and Tests	34
Broadcast Message	14
Bus Termination (LON)	42, 67

C

C factor	37
Cable Type	67
Channel Errors	77
Channel Mode	36
Channel Names	
Channel Number	9
Channel Visible	36
Characteristic Values	64
Configuration at a PC with ECSwin Software	76
Configuring Analog Inputs (binary)	

	35, 38
Connecting the A2000	69
Connecting the DME400	69
Connection Lengths (LAN bus)	13
Cost Factors T1 and T2	33
Counting Edge	11
Coupling, Differential	9

D

Date Format	34
Date/Time	33
Debounce Time	11
DELETE Menu	43
DIR	14
DTE (data terminal equipment)	12

E

E Unit, P Unit	.36
ECL – Energy Control Language	.60
ECS LAN	42

F

-	
Fiber-optic Cable Transmission Paths	12
FINDER	9
Firmware Update	45
Fixed Point	37
Floating Point Numbers	9

H

H Programs	 0

I	
Identification	14
Interval	18
Interval Source	33
Interval Time	33

L

LAN LED	15
Language	
LCD Contrast	
LON Activity	
LON Channel	
LON Factor, LON Offset	39
LON LED	15
Long Name	
Loop Resistance	13

Μ

Mapping51	
Master Reset 45	5
Maximum Cable Lengths	7
Measurement Data List18	3
Measurement Data List Value Range 19)
Memory Structure of the Measurement Data List 19	J
Meter Connection	
Settings70)
Meter Constant	7
Meter Input 18	3
Multi-Master Architecture)

Ν

Network Topologies	66
Neuron ID	39
Numeric Range	. 9

0

OCL210	 71
On/Off Function	 10

Ρ

P Factor	10, 37
P Program	60
Password	
POLL DELAY	42
Power Factor	37
Programming	60
Programming cable Z302V	46
Pulse Duration	

R

Recording Duration	
Reinstallation	
Reinstalling a LON Device	75
Relay Output	
Repeater	
Replacing a LON Device	
Ring Buffer	
RS232 Port	

S

S0 Outputs S1 S4	11
SO/Level	34
Sampling Time	11
Self-Test	12
Source (tariff source)	33
Start/Stop Channel	10, 36
Start/Stop Function	10
STATCHECK	12
SUBNET/NODE	
Subprogram	60
Summator ID	33
Summator Name	
Switching the Channel Display On/Off	10
Synchronizing Interval Measurement Data List	18

Т

T Fixed Point	33
Tariff Unit	33
TCP Interface	12
Terminating Resistor (ECS LAN)	13
TIMING CODE	42
Transmission Speed	12
Trigger Edge	11

U

37
71
71
70
71
70
73
73
14

V

Virtual Channels		30
------------------	--	----

13 Maintenance, Repair and Product Support

Battery Maintenance

The integrated backup battery (MnO_2 Li button cell) is easy to replace with the help of the sliding cover on the top of the device. The cover is removed from the screw mounting to this end. The rounding of the cover and its angled lug are precisely matched top the button cell. After the cover has been set onto the button cell and the lug has snapped into place, the cell can be removed by gently pulling the cover.

A new button cell (only type CR2450 is approved) can then be gently pressed into the battery holder.

Note: When changing the battery, use only the sliding cover intended for this purpose and do not insert it into the housing next to the battery!

Opening the Instrument / Repairs

The instrument may only be opened by authorized, trained personnel in order to ensure flawless operation and to assure that the guarantee is not rendered null and void. Even original replacement parts may only be installed by authorized, trained personnel. If it can be ascertained that the instrument has been opened by unauthorized personnel, no guarantee claims can be honored by the manufacturer with regard to personal safety, measuring accuracy, compliance with applicable safety measures or any consequential damages.

Repair and Replacement Parts Service DAkkS Calibration Center and Rental Instrument Service

If required please contact:

GMC-I Service GmbH Service Center Beuthener Straße 41 90471 Nürnberg, Germany Phone: +49 911 817718-0 Fax: +49 911 817718-253 e-mail: service@gossenmetrawatt.com www.gmci-service.com

This address is only valid in Germany. Please contact our representatives or subsidiaries for service in other countries.

Industrial Product Support

If required please contact:

GMC-I Messtechnik GmbH

Industrial Product Support Hotline

Phone +49-911-8602-500 Fax: +49-911-8602-340 e-mail support.industrie@gossenmetrawatt.com

Edited in Germany • Subject to change without notice • PDF version available on the Internet

GMC-I Messtechnik GmbH Südwestpark 15 90449 Nürnberg • Germany Phone: +49-911-8602-111 Fax: +49 911 8602-777 e-mail: info@gossenmetrawatt.com www.gossenmetrawatt.com